2011年2月17日

資料 ビジョン案

第3回 下水道ビジョン策定懇談会

※前回懇談会で意見のあったうち、対応を行った主な箇所を<mark>黄色網掛け</mark>で表示

町田市下水道ビジョン

次世代につなげる 良好な水環境を目指して

町田市

【 目 次 】

第1章 町田市下水道ビジョンとは
1. 下水道ビジョンの目的
2. 下水道ビジョンの位置付け
第2章 下水道事業の概要
1. 町田市下水道の主な特徴
1.1. 単独公共下水道とは
1.2. 分流式下水道とは
2. 下水道施設の概要
2.1. 下水処理場とポンプ場
3. 下水道管の概要
3.1. 下水道管の布設延長12
4. 経営の状況1
4.1. 下水道使用料収入の推移1
4.2. 歳出入の状況14
4.3. 起債の推移16
4.4. 一般会計繰入金の推移17
第3章 基本理念、基本方針18
1. 基本理念
2. 基本方針 19
第4章 施策の展開20
1. 住環境の改善22
2. 河川の水質向上への貢献29
3. 地球温暖化対策と資源の循環利用32
4. 浸水対策の推進
5. 地震対策の推進 47
6. 効率的・効果的な維持管理の推進5
7. 持続可能な下水道財政の確立57
第5章 進捗の管理について65
第6章 資料編
1. 下水道ビジョン策定経過60
1.1. 計画策定体制60
1 9 計画策定終過 7:

第1章 町田市下水道ビジョンとは

1. 下水道ビジョンの目的

町田市では、主に住環境の改善と河川などの水質保全を目的に、1964 年に**下水道事業に 着手し、2013 年度には**市街化区域の汚水管整備が概ね完了する予定です。

汚水管整備に伴いこれまで伸び続けていた下水道使用料も、節水意識の高まり、節水機器やボトル水の普及等により伸びは鈍化傾向にあり、コストの削減、事業の選択、様々な増収策の模索など効率的・安定的な下水道経営に方針転換する必要があります。

このような状況の中、事業費の大きな下水処理場の**改築更新時期を間近に迎え、その将来 構想について見極めが必要な時期にきています。

このほかにも、都市化の進展や多発する**ゲリラ豪雨などにより発生する浸水被害への対策、 老朽化する施設の適切な維持管理、大規模地震への備え、地球温暖化対策など多くの課題が 山積しており、今後の下水道事業のあり方について、長期的な視点に立った方向性を示すこ とが求められています。

本計画は、『今後の下水道のあり方について長期的な視点に立った基本的な方針や施策の方向性を示し、市民の下水道事業への理解を深め、協力を得ながら着実に下水道の役割を果たすこと』を目的に策定するものです。

汚水整備が本格化した 1970 年代の工事の様子 (左と中央の写真は汚水管工事の様子、右は工事中の成瀬クリーンセンター)

〔下水道の役割〕

○ 住環境の改善

トイレの水洗化や汚水の速やかな排除により、快適な住環境づくりに資する。

- *公共用水域の水質保全
 - 汚水を下水処理場で処理し、河川や海の水質向上に寄与する。
- 浸水の防除

雨水を凍やかに河川に流し、家屋の浸水を防いで生命や財産を守る。

〔社会状況の変化〕

- ・低成長社会の到来
- ・人口減少、少子高齢社会の進展
- ・事業の透明性の確保、効率化への要求の高まり
- ・住民の行政への関心の高まり
- ・資源・エネルギー問題、地球温暖化問題の深刻化

〔下水道を取り巻く状況の変化〕

- ・節水型社会の到来(節水機器、ボトル水の普及等)
- ・河川や海の水質向上への要請
- ・老朽化する下水道施設の増加
- ・下水道施設の増加に伴う維持管理コストの増大
- ・ゲリラ豪雨の頻発化
- ・大規模地震発生の恐れ
- ・潤いのある水辺空間への関心の高まり

〔町田市下水道の課題〕

- ・厳しいことが予想される下水道財政の見通し
- ・市街化区域内に残る未整備箇所の解消
- ・**市街化調整区域の未対策汚水の解消
- ・事業費の大きな下水処理場の更新とその最適化
- ・河川や海の水質改善を目指した処理水質向上の要請
- ・雨水整備の遅れ
- ・河川整備の遅れによる影響
- ・整備段階から維持管理段階への移行
- ・未耐震化施設の解消
- ・環境負荷軽減への対応
- ・下水道事業に関する情報発信の不足

[ビジョン策定の必要性]

- ●市街化区域の汚水管整備が概ね完了した後の下水道事業の方向性を定める必要がある。
- ●事業優先の考え方から経営の効率化・安定化に方針転換するため、コストの削減、 事業の選択、様々な増収策の模索などを行う必要がある。
- ●事業費の大きな下水処理場の改築更新時期を迎え、将来構想について見極めが必要 となっている。
- ●「*公共下水道事業評価委員会」や「*包括外部監査」からの指摘を踏まえ、下水道 事業の方向性を明らかにする必要がある。

2. 下水道ビジョンの位置付け

町田市の下水道事業が始まってから市街化区域の汚水管整備の目途が立つまでに 50 年という歳月が必要なほど、下水道事業は整備に相当な時間を要します。そして、この間、下水道の基本的な役割は変わっていません。

また、10~30 年程度で大きな費用を伴う設備の改築更新が発生する下水処理場を単独で 2 ヶ所持つことから、町田市の下水道事業は長期的な視点に立って方向性を定め、進めていく ことが重要となります。

このため本下水道ビジョンは、『2012(平成24)年度を初年度として、概ね30年先の下水道を見据えた基本的な方針や施策の方向性を示したもの』であり、位置付けは、『下水道事業を展開していくうえで、最も基本となるもの』です。

本下水道ビジョンでは、以下の点に留意しています。

- ・ 下水道事業の安定経営に重点を置きながら、効率的に事業を進めていくための方向性 を示すこと。
- ・ 収入予測と想定される事業とのバランスを考慮して、事業の選択と投資の集中を図ること。
- ・ 関連する町田市の計画や、関連する下水道の計画と整合を図ること(図 2)。

ビジョンは 30 年先の 将来を考えるんだわ!

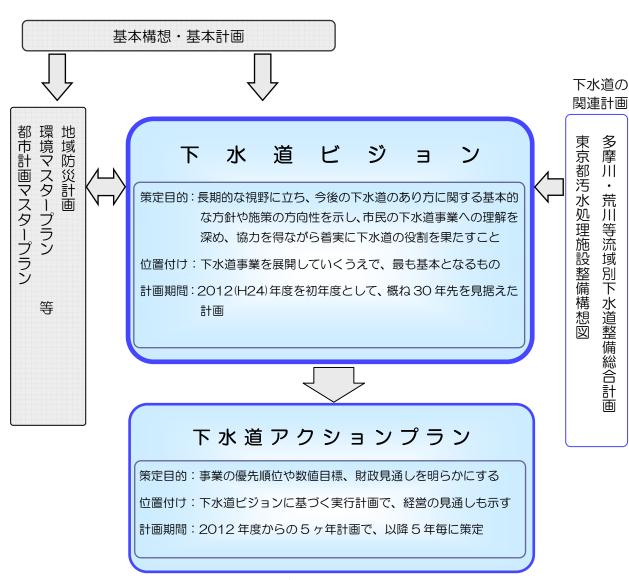


図 2 下水道ビジョンと関連計画の位置付け

第2章 下水道事業の概要

町田市の下水道事業は、1964年の鶴川団地の開発とともに始まり、1971年の町田駅周辺の 事業着手で本格化しました。

以降、整備区域を順次拡大し、現在は下水処理場から最も遠い相原地区の整備を進めており、2013年には市街化区域の汚水管整備が概ね完了する予定です。

整備区域の拡大とともに下水道 (汚水) を利用できる人口は増え続け、2009 年度末で398,668 人 (普及率約94%) が利用可能となっています。

この普及状況は、全国平均を上回っていますが、区部や多摩地域の平均からみると、やや 下回っている状況です。

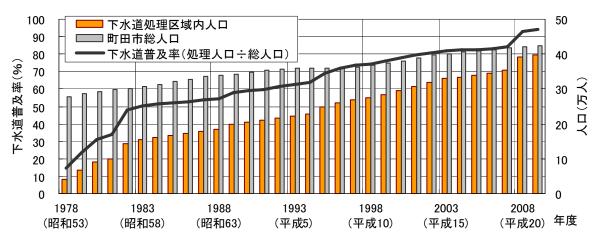
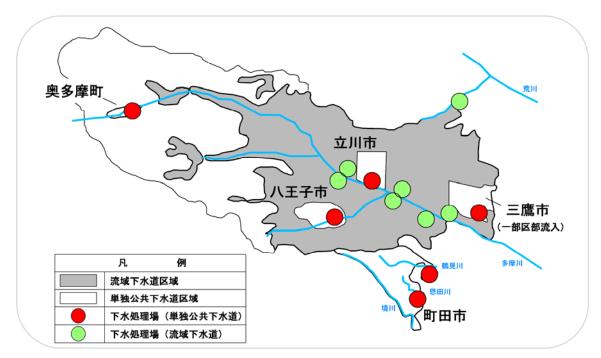


図 3 下水道普及率の推移

1. 町田市下水道の主な特徴


町田市下水道の主な特徴として、次の2点が挙げられます。

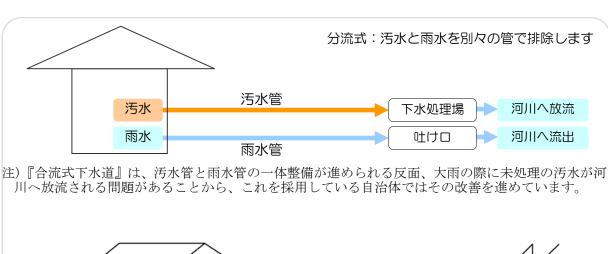
- ◆市内のほとんどが『単独公共下水道区域』となっている。
- ◆『分流式下水道』で整備している。

1.1. 単独公共下水道とは

多摩地域のほとんどの自治体は、多摩川流域で東京都が整備・維持管理を行っている『流域下水道』の下水処理場で汚水を処理しています。

しかし町田市は、多摩丘陵を境にそのほとんどが境川流域及び鶴見川流域という地形条件があったこと、住環境の改善を図るため汚水処理を早期に行う必要があったことから、『流域下水道』による処理を行わず、町田市単独で整備・維持管理する『単独公共下水道』を選択し、2ヶ所の下水処理場で汚水を処理しています。

注)多摩地域で、『単独公共下水道』として自治体が整備・維持管理を行っている下水処理場は、町田市、三鷹市、立川市、八王子市、奥多摩町の5市町のみです


図 5 多摩地域の下水道計画区域の構成(現状)

1.2. 分流式下水道とは

下水道の排除方式には、汚水と雨水を同一の下水道管で排除する『合流式下水道』と、汚水と雨水を別々の下水道管で排除する『分流式下水道』とがあります。東京 23 区などは、『合流式下水道』を採用していますが、町田市では以下の理由により『分流式下水道』を採用しています。

- ・合流式に比べ管の口径が小さくなることから、汚水管の建設費が安い
- ・汚水管と雨水管を分けることで、河川や海への汚水の流出が発生しない
- ・雨水の流入がないので、汚水処理のみ考えればよく、下水処理場の規模が小さくて済む

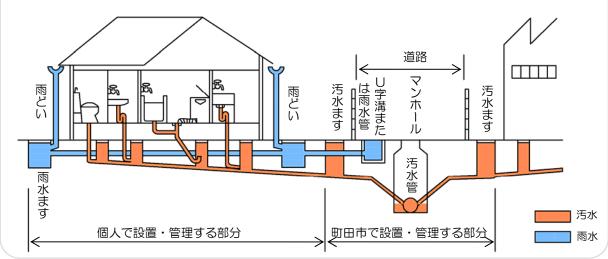


図 6 分流式下水道の概要

2. 下水道施設の概要

2.1. 下水処理場とポンプ場

家庭や事業場から排出される汚水は、汚水管や**ポンプ場を通って下水処理場へ運ばれます。 下水処理場は汚水を処理し、きれいな水にして河川や海へ戻すという大切な役割を持っています。

町田市は単独で2ヶ所の下水処理場と1ヶ所のポンプ場を整備・維持管理しています。 地形条件から市域を南北に分け、南部で発生する汚水は成瀬クリーンセンターへ、北部からの汚水は鶴見川クリーンセンターへ運ばれます。

この2ヶ所の下水処理場で、市内で発生する汚水のほとんどを処理しています。 また、一部地域の汚水を下水処理場に送水するため、ポンプ場が1ヶ所稼動しています。

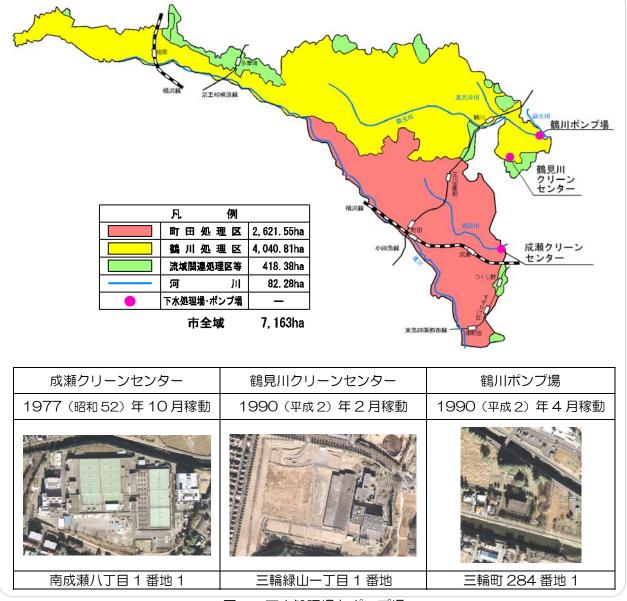


図 7 下水処理場とポンプ場

下水処理場の機能には、汚水をきれいにする『汚水処理』機能と汚水処理の結果発生する **汚泥を焼却等する『汚泥処理』機能とがあります。

2ヶ所の下水処理場及びポンプ場の概要は表 1の通りです。

中心市街地の汚水を処理する成瀬クリーンセンターの方が規模が大きくなっています。

また、成瀬クリーンセンターについては、従来の標準法とこれまでよりも処理水質がよい **高度処理法とで汚水処理を行っており、河川や海の水質向上に寄与しています。

表 1 クリーンセンター(下水処理場)とポンプ場の概要

施設	名称	成瀬クリーンセンター	鶴見川クリーンセンター	鶴川ポンプ場
処理開	始年月	1977(昭和52)年10月	1990(平成 2)年2月	1990(平成 2)年4月
敷地	面積	52,400 m ²	201,100 m ²	5,450 m ²
日最大処	0.理能力	115,750 m³/⊟	45,500 m³/⊟	3,000 m ³ /⊟
処理 (日最大処理		標準法 (10,000m ³ ×10 池) 高度処理法 (7,875m ³ ×2 池)	標準法 (5,688m ³ ×8 池)	(鶴見川クリーン センターへ送水)
高度処	理化率	13.6%	0%	_
2009 年度	日平均	75,746 m³/⊟	38,513 m³/⊟	2,893 m³/⊟
流入実績	日最大	82,120 m³/⊟	41,864 m³/⊟	_
汚泥烐		45 t /日×1 基 (1982 年稼動) 50 t /日×1 基 (1997 年稼動)	30 t /日×1 基 (1990 年稼動、休止中) 60 t /日×1 基 (2001 年稼動)	
2009 焼却		日平均 66.9 t /日	日平均 29.7 t /日	_
備	 考	高度処理法の池は、 2009 年度より稼動		汚水中継ポンプ場

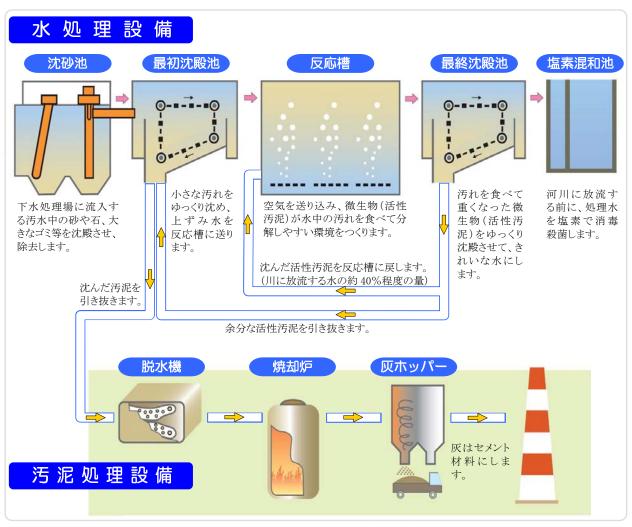


図 8 汚水処理のしくみ(標準法)

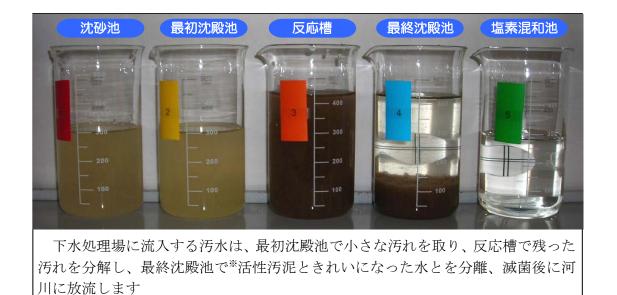


図 9 処理過程ごとの汚水の様子

反応槽や最終沈殿池の水の茶色の部分は活性汚泥(微生物の集合体)です。

3. 下水道管の概要

3.1. 下水道管の布設延長

2009 (平成 21) 年度までに整備した下水道管の総延長は、約 1,488km となっています (汚水管約 1,171km、雨水管約 317km)。

汚水管は、相原地区を除いた市街化区域をほぼ網羅するように布設されています。

汚水管整備を優先させてきた結果、浸水対策は遅れており、今後も雨水管整備が必要な状況です。

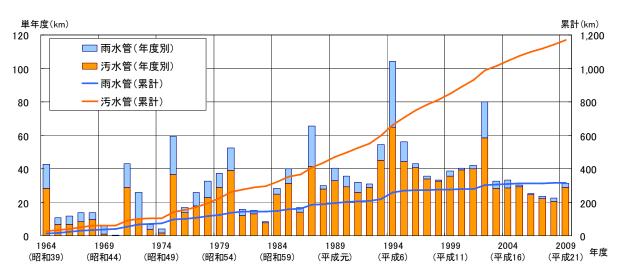
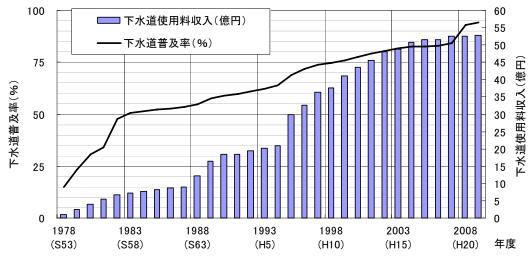


図 10 汚水管と雨水管の布設延長の推移



4. 経営の状況

4.1. 下水道使用料収入の推移

汚水管整備を進め下水道が普及したことで下水道使用料収入も着実に伸び、毎年 50 億円を 超えています (図 11)。

近年では、相原地区の整備を進め下水道利用者が増えている状況ですが、節水意識の高まりや節水機器、ボトル水の普及等によって使用料収入の伸びが鈍化し、ほぼ横ばいの傾向にあります。

注)2007年に普及率の算出方法を見直したため、一時的に普及率が伸びています。

図 11 下水道普及率と下水道使用料収入の推移

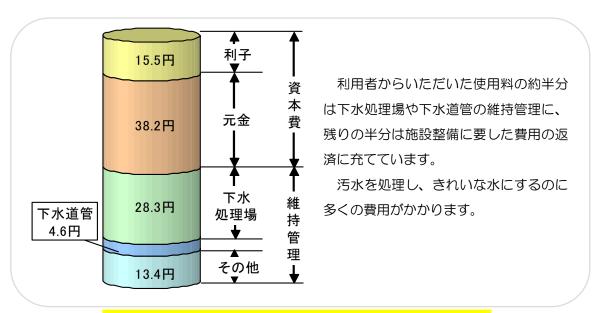


図 12 下水道使用料 100 円あたりの使い道(2009 年度実績)

4.2. 歳出入の状況

4.2.1 歳出入の割合

(1) 歳出入累計の内訳(前年度繰越金を除く)

これまでに約3,600億円の事業費を投入して、下水道整備を進めてきました。

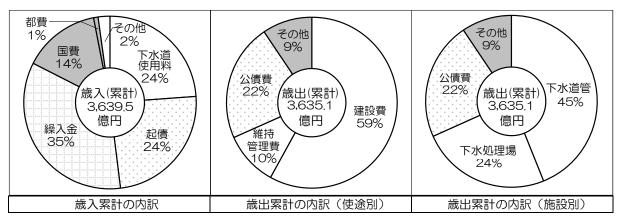
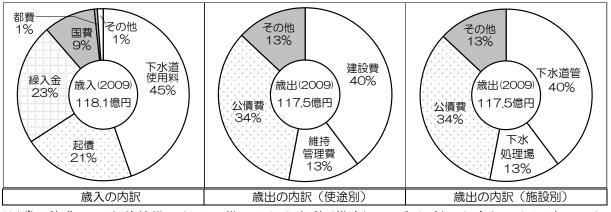



図 13 歳出入累計の内訳(1964~2009年度)

(2) 2009年度の内訳

市街化区域の汚水管整備の完了に向け事業を進めていることから、下水道管に係る支出の 割合が 40%と高くなっています。

注)*公債費:下水道整備のために借り入れた起債(借金)の元金と利子を合わせた返済のこと 図 14 2009 年度の歳出入の内訳

4.2.2 歳入、歳出の推移

1994年度まで下水道事業費は増加傾向でしたが、90年代後半のバブル崩壊を境に減少に転じ、近年はピーク時の約8割となっています。

近年、歳入の約 1/4 を起債が占めており、この起債の返済として、毎年、元金と利子を合わせた額を公債費(起債元利償還費)として支出しています。この支出が歳出の約 1/3 と大きな割合となっており、経営の自由度が制限されている状況です。

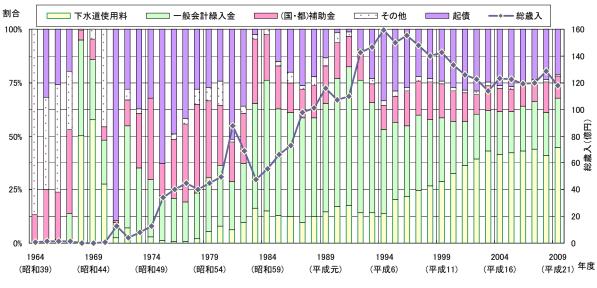


図 15 歳入の推移

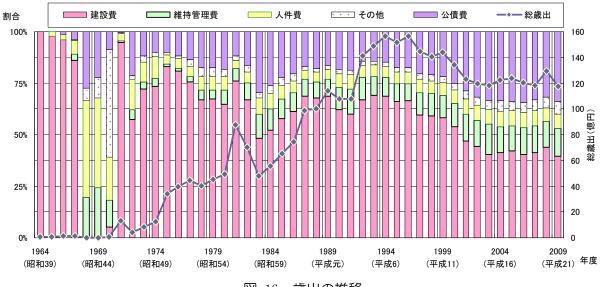
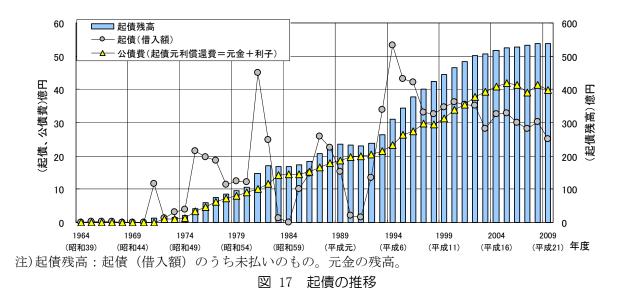


図 16 歳出の推移

公債費が増え過ぎると良くないんだね!

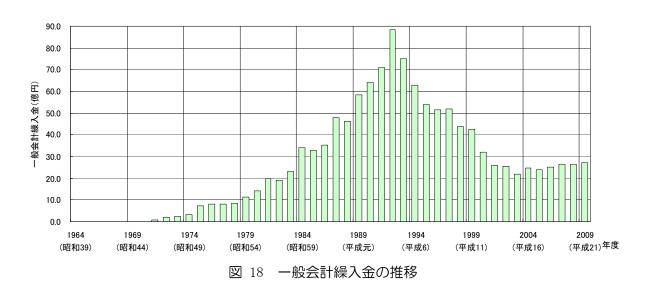

4.3. 起債の推移

「起債」とは、下水道整備の財源として国や金融機関から市が借り入れる借金のことで、 その返済が長期にわたるものをいいます。下水道事業を起債なしに行えば、短期間に非常に 大きな財政負担を負うことになります。また、市の財産となる下水道施設は長期にわたって 利用できるため、現在の市民だけではなく将来の市民にもその経費を負担してもらうことが 公平となります。このように起債は、ある年度の過大な財政負担を軽減し、計画的な財政運 営を行うための機能を持つだけではなく、税負担の公平性を確保するという側面も持ってい ます。

下水処理場整備を自ら行う町田市の場合、その整備によって一時的に多額の支出が必要となり、その財源として起債の借入額も上昇します。

1981年は成瀬クリーンセンターの増設に加えて鶴見川クリーンセンターの用地購入により、 また 1994年は成瀬クリーンセンターと鶴見川クリーンセンターの増設工事が重なったこと により、起債は大幅な伸びとなっています。

近年は、起債を年30億円程度に抑制していますが、元金償還額が起債の借入額より少ない ため起債残高は微増しており、その削減が必要となっています。


4.4. 一般会計繰入金の推移

下水道事業の財源の主なものには、下水道使用料、国や都からの補助金、起債(借金)とともに一般会計繰入金があります。

一般会計繰入金とは、下水道事業会計に対して、雨水処理に要する経費などその費用を市 が負担する必要のあるものについて一般会計から繰り入れられる資金のことです。

下水道事業開始初期段階は使用料収入も少なく、補助金、起債とともに一般会計繰入金は 歳入の柱の一つでした。積極的に整備区域の拡大を図った 80 年代からは、ピーク時に 90 億 円近くを繰り入れるなど一般会計繰入金が下水道事業歳入の半分以上を占め、下水道普及の 大きな原動力となりました。

その後、整備区域の拡大に伴う下水道使用料収入の伸び等により、徐々に一般会計繰入金 も減少し、近年では25億円前後で推移しています。

下水道事業の費用負担の一般的な考え方は、次のとおりです。

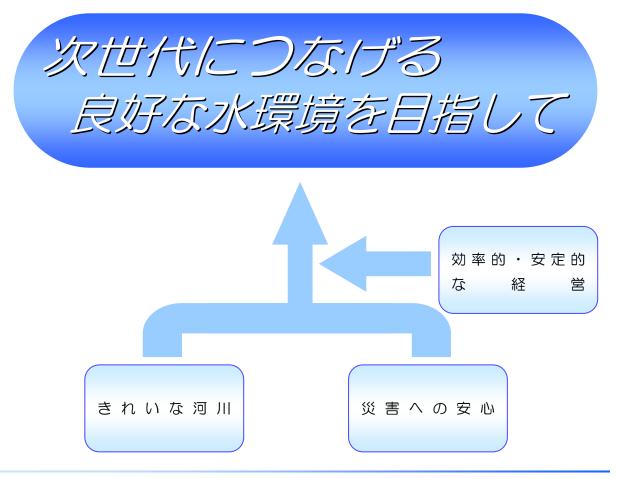
事業	*資本費	維持管理費
汚水事業	私費・公費負担	私費負担
雨水事業	公費負担	公費負担

汚水事業については、受益者負担の考えに基づき原則として利用者からの使用料(私費)で賄い、雨水事業はその受益が多くの市民に及ぶことから一般会計繰入金(公費=税金投入)で賄うという考え方(1961年に出された第1次下水道財政研究委員会の提言)です。

これまで下水道整備に約3,600億円の事業費を投入しており、そのうちの35%が一般会計 繰入金となっています。

今後、雨水事業に取り組んでいくため、費用負担の考え方に基づき一般会計繰入金により 事業を進めていくこととなりますが、昨今の市財政状況を考慮し、慎重な見通しの下で事業 を進めていかなければなりません。

第3章 基本理念、基本方針


1. 基本理念

下水道は、住環境の改善と河川などの水質保全や、暮らしの安心・安全の確保など、生活を支える重要な社会基盤として、まちづくりに貢献しています。

1964 (昭和 39) 年に下水道事業に着手してから 50 年近くを経て市街化区域の汚水管整備が概ね完了するところですが、未着手となっている市街化調整区域への対応、下水処理場・ポンプ場・下水道管 (汚水管・雨水管) の老朽化した施設の改築更新、地震への備え、近年多発するゲリラ豪雨への対応、環境に配慮したさらなる取り組みなど、まだまだ多くの対策が必要な状況です。

しかしながら、少子・高齢社会の進展、節水型社会の到来、経済成長率の鈍化による税収の伸び悩み等、財政状況が厳しくなることが予測される中、限られた財源のもと、生活を支える下水道を維持・継続していくためには、より効率的・安定的な事業展開を図る必要があります。

下水道のもつ本来的な役割と境川や鶴見川の源流市であるという地理的特性、住宅都市であり商業都市でもある立地条件とを考慮し、下水道事業によって未来に責任をもって引き継ぐものを「きれいな河川」と「災害への安心」とし、これらを「効率的・安定的な経営」のもとで進めていくという考えから、町田市下水道の基本理念を以下のとおりとします。

2. 基本方針

基本理念を実現するための基本方針を以下の三つとします。

次世代に

環境に配慮した施設整備を行い、

より良い環境づくりを進めます

災害に強いまちづくりを進め、

安心な暮らしを築きます

効率的で健全な経営を図り、

より良い下水道サービスに取り組みます

環境に配慮した施設整備を行い、より良い環境づくりを進めます

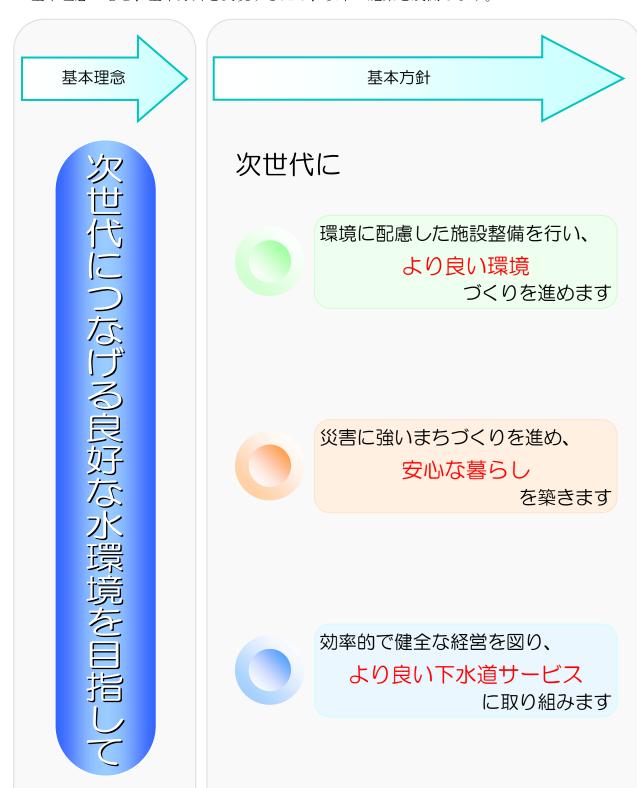
環境意識の高まりにより、環境への負荷の少ない*循環型社会の構築が求められています。 下水道事業でも、河川など公共用水域の水質向上や、地球温暖化対策としての*温室効果ガスの削減、資源の有効利用などの環境配慮が求められています。

これらのことから、環境に配慮した施設整備を行い、より良い環境づくりを進めます。

災害に強いまちづくりを進め、安心な暮らしを築きます

ゲリラ豪雨や大規模地震及び老朽化した下水道施設による事故の発生は、生活や都市機能 に大きな影響を及ぼします。

このため、豪雨による浸水や地震による被災の対策と備えを強化し、災害に強いまちづくりを進め、安心な暮らしを築きます。


効率的で健全な経営を図り、より良い下水道サービスに取り組みます

これまで進めてきた住環境の改善を目的とする下水道の普及に加え、今後は、下水処理場の機能高度化、浸水対策、増加する施設の維持管理、老朽化した施設の改築更新等に要する経費の増加が予測されます。

限られた財源のもと、多くの課題に対応するためには、より効率的な事業展開が必要です。 これらを踏まえ、効率的で健全な経営を図り、継続的に下水道事業を推進し、市民の生活 を支える下水道のサービス向上に取り組みます。

第4章 施策の展開

基本理念のもと、基本方針を実現するため、以下の施策を展開します。

施策と目標

住環境の改善

汚水管と合併処理浄化槽による整備を 進め、快適な住環境に寄与します

概ね30年後の姿は 生活排水を含め全ての汚水が100%処理されている

河川の水質向上への貢献

汚水の適正処理を進め、

広域的な水環境の保全に貢献します 安心して水辺で水遊びができるような河川になっている

地球温暖化対策と資源の循環利用

環境負荷の少ない処理場運営を進め、 地球環境の保全と循環型社会へ貢献します 環境に配慮した下水道になっている

浸水対策の推進

総合的な取り組みにより、

浸水被害の軽減を図ります

50mm/hの雨が降っても浸水被害が発生しなくなっている

地震対策の推進

施設の耐震化と危機管理体制の強化を進め、 地震による被害の最小化を図ります

地震が発生した場合でも

下水道が使用できるようになっている

効率的・効果的な維持管理の推進

予防保全型の維持管理を進め、

安定的な機能確保を図ります

突発的な事故が発生しないようになっている

持続可能な下水道財政の確立

下水道財政の健全化を図り、

安定的なサービスを提供します

公共性を担保しつつ独立採算の経営ができている

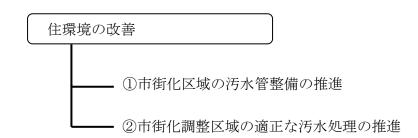
図 19 ビジョンの体系

1. 住環境の改善

目標

汚水管と合併処理浄化槽による整備を進め、快適な住環境に寄与します

概ね30年後の姿:生活排水を含め全ての汚水が100%処理されている


目標設定の背景

汚水管整備を進め、2013(平成25)年には市街化区域が概ね整備完了する予定です。 しかしながら、市街化区域の一部に、未整備となっている箇所があります。

また、市街化調整区域の約1,100戸の一部には、汲み取りや単独**浄化槽を使用している建物や、合併処理浄化槽の維持管理が適切になされていない建物があり、生活排水が未処理のまま水路や河川に流れ込んでいます。

そのため、水路や河川の水質向上を図り、快適な住環境を確保するため、効率性も考慮して最適な汚水処理施設(汚水管または合併処理浄化槽)の整備を行う必要があります。

施策の体系

施策の展開

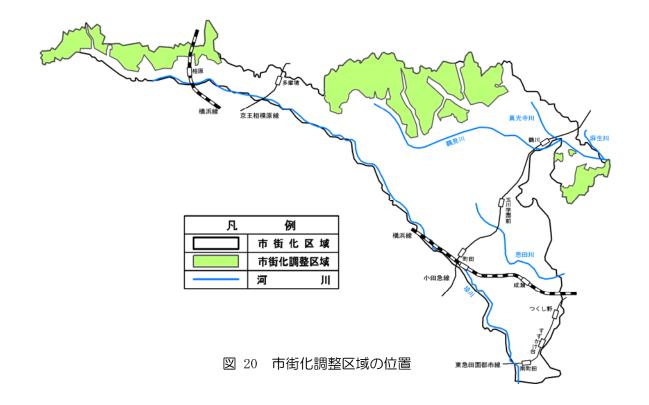
- ① 市街化区域の汚水管整備の推進
- ・ 未整備箇所の汚水管整備を進めます。
- ・ 下水道法に基づき、**未接続家屋の汚水管への接続を指導します。

② 市街化調整区域の適正な汚水処理の推進

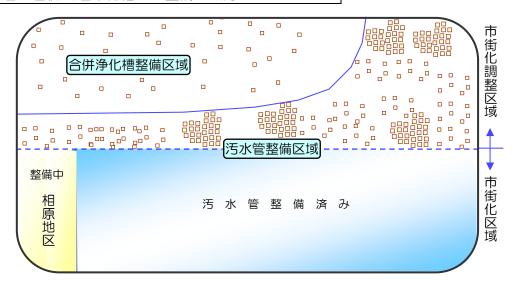
・ 汚水管整備区域と合併処理浄化槽整備区域を定め、適正な汚水処理を進めます。

解説 ・・・・・・・・・・・・・・・・・・・・ 1. 住環境の改善

▶未整備箇所の対応方針◆


表 2 未整備箇所の対応方針

未整備の理由	対応方針
都市計画道路等の	近々で道路整備予定がある箇所は道路整備に合わせて汚水管を整備します。
整備予定がある	道路整備予定が未定である箇所は、現場状況を勘案し汚水管整備を検討します。
低地等のため汚水管	*マンホールポンプの導入も考慮し、経済的な手法で整備を行います。
整備が難しい	
私道への汚水管設置	未承諾の方に対して、汚水管設置についての理解が得られるよう努めます。
の承諾が得られない	


市街化調整区域の汚水処理施設整備の方針

町田市内の市街化調整区域 1,684ha には約 1,100 戸の建物と約 3,500 人の方々が住んでいます。その多くは合併処理浄化槽で汚水を処理していますが、汲み取りや単独処理浄化槽の建物も存在しています。また、合併処理浄化槽が設置されていても、適正に維持管理されていないものもあり、水路等の水質を悪化させる原因となっています。

そのため、生活環境の改善と水環境の保全を目指して施設整備を行うにあたって、経済性を考慮した結果、汚水管整備区域と合併処理浄化槽整備区域を設定し、汚水管だけでなく合併処理浄化槽についても市が整備・維持管理を行う方式を検討します。

汚水管と合併処理浄化槽との整備区域分けのイメージ

汚水管と合併処理浄化槽の年あたり経費による経済比較の考え方。

汚水管整備

〇下水処理場(耐用年数33年)

建:実績値を基に費用関数により算出

維:実績値を基に費用関数により算出

〇汚水管(耐用年数 72 年)

建:近年の実績による平均単価より算出

維:費用関数により算出

〇マンホールポンプ(耐用年数 25 年)

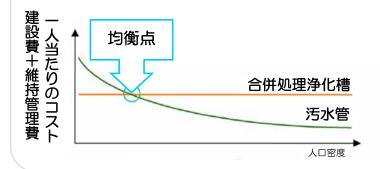
建:費用関数により算出

維:近年の実績による平均単価より算出

合併処理浄化槽整備

〇合併処理浄化槽(耐用年数26年)

建:国の補助基準額により算出


維:費用関数により算出

〇放流先水路(耐用年数 72 年)

建:積算により算出 維:費用関数により算出

注)建:建設費

維:維持管理費

人口密度が高い	汚水管整備
市街化区域に近接	が有利
人口密度が低い	合併処理
市街化区域から遠い	浄化槽が有利

経済比較の考え方

<

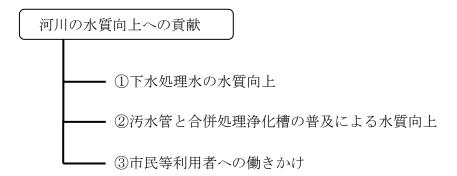
2. 河川の水質向上への貢献

目標

汚水の適正処理を進め、広域的な水環境の保全に貢献します

概ね30年後の姿:安心して水辺で水遊びができるような河川になっている

目標設定の背景


「成瀬クリーンセンター」で処理した水は恩田川へ、「鶴見川クリーンセンター」で処理した水は鶴見川へそれぞれ放流され、これらの水は東京湾へ流れ込みます。

これまで、主に汚水中の有機物の削減を目的とした標準法によって汚水処理を行い、身近な水路や河川の水質向上に寄与してきました。

しかし、外海との水の入れ替わりが少ない東京湾では*富栄養化による*赤潮が慢性的に発生しており、河川ならびに東京湾の水質向上を図るため、これまでの標準法では削減することが難しい「*窒素」及び「*りん」の削減を、東京湾を放流先とする関係自治体とともに進めることが求められています。

また、下水処理場で汚水をきれいにすることとともに、一人一人が水を汚さないように心がけることも水環境の保全につながることから、市民等利用者の協力が得られるよう啓発を行っていくことも重要です。

施策の体系

施策の展開

① 下水処理水の水質向上

- ・ 下水処理場の既存施設については、**準高度処理により段階的な水質の向上を目指します。
- ・ 下水処理場に増設する処理施設は、高度処理により水質の向上を目指します。
- ・ 最新技術の動向を見据え、必要に応じ導入を図ります。

② 汚水管と合併処理浄化槽の普及による水質向上

- ・ 市街化区域の汚水管整備を進め、水質の向上を目指します。
- ・ 市街化調整区域の汚水処理施設(汚水管または合併処理浄化槽)の整備を進め、水質の 向上を目指します。

③ 市民等利用者への働きかけ

- ・ 利用者の方々に、下水道管へ流してはいけないものを周知し、正しい使い方を PR します。
- ・ 下水道法に基づき、有害物質や高濃度の**有機性排水を扱う事業場に対する指導を強化 します。
- ・ 下水道法に基づき、未接続家屋の汚水管への接続を指導します。
- ・ 浄化槽法に基づき、合併処理浄化槽の適切な維持管理の指導を強化します。

解説

2. 河川の水質向上への貢献

水質向上への取り組み

1960年代後半以降の人口増加により急増した生活排水が、身近な水路や河川の水質悪化を招いたことから、その対策として汚水管整備を進め、近年ではその水質は大きく改善されました。

しかし、町田市の処理水が流れ込む東京湾では富栄養化による赤潮が慢性的に発生しており、東京湾の流域自治体はこれまでの有機物を削減するという取り組みに加え、窒素やりんを削減する汚水処理の高度処理化を求められています。

高度処理はこれまでの標準法による処理に比べ水質は向上しますが、大きな施設が必要となることから、新たな施設整備に伴う費用や時間が問題となります。

このため、段階的な取り組みとして既存施設・設備を活かし、運転管理の工夫と最小限の設備改造との組み合わせにより、窒素やりんを削減する水質向上に取り組みます。

標準法

従来の取り組み

主に、下水中の汚れ(有機物)を取り除く水処理方式で、最も一般 的に用いられている方法。

処理水中の主に有機物を削減

現在の取り組み

運転管理の工夫による水質向上の取り組み。

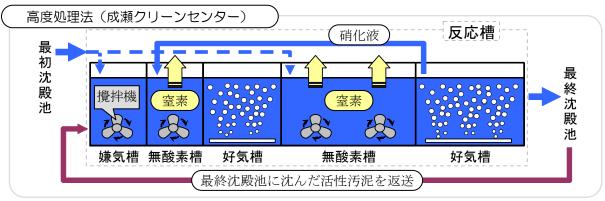
・処理水中の有機物の他に、窒素又はりんを低減

準高度処理法(標準法と高度処理法の中間的な処理法)

段階的な 取り組み 既存施設・設備を活かし、運転管理の工夫に加え機械かくはん装置の設置など最小限の設備改造を組み合わせた水質向上の取り組み。

・処理水中の有機物の他に、窒素又はりんを削減

高度処理法


将来的な 取り組み 水処理施設の建替や増設の際に導入する水処理方式。

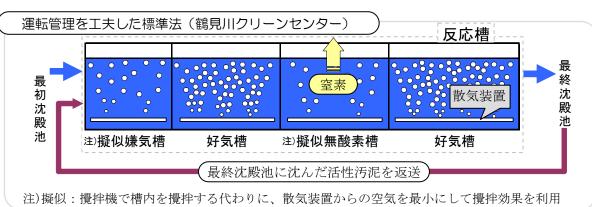

・処理水中の有機物の他に、窒素とりんを同時に削減

図 21 町田市の水質向上への取り組み内容

2ヶ所の下水処理場で実施している水質向上への取り組み

これまでの標準法では十分に削減することができない「窒素」や「りん」を削減する取り組みとして、成瀬クリーンセンターでは2009年4月から高度処理法を、鶴見川クリーンセンターでは2010年2月から運転管理を工夫した標準法を一部の池で実施し、水質の向上に努めています。

嫌気槽	好気槽	無酸素槽
空気を吹き込まずに下水と活	空気を十分に吹き込み硝化を	無酸素状態にして、硝化した
性汚泥を混ぜ合わせ、りんを	促進し、あわせて微生物にり	処理水から微生物の働きで窒
水中に放出させる槽	んをより多く取り込ませる槽	素を空気中に放出する槽

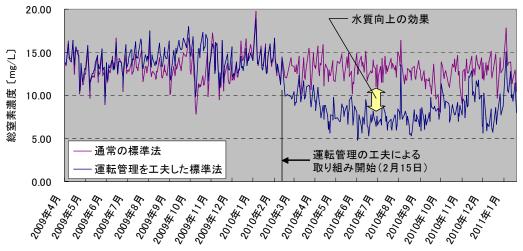
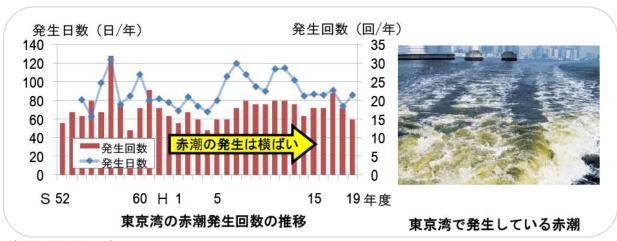
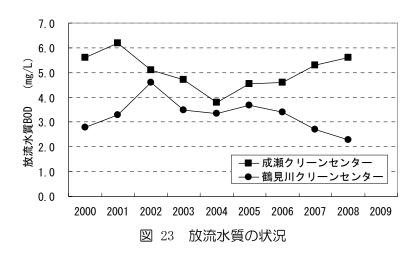



図 22 通常の標準法と運転管理を工夫した標準法との処理水質の違い(窒素での比較)


資料:東京都環境局

東京湾の赤潮発生回数の推移、東京湾で発生している赤潮

▶下水処理場からの放流水質の状況◆

成瀬クリーンセンター、鶴見川クリーンセンターは、ともに*計画処理水質(年間平均値)が*BOD 10 mg/L となっています。

過去 10 年間の放流水質は、成瀬クリーンセンターが 6.2mg/L以下、鶴見川クリーンセンターが 5mg/L 以下となっており、計画処理水質を満たすとともに、水質汚濁防止法で定められている排水基準 (BOD 25 mg/L) も大幅に下回っています。

◆主要河川の水質状況◆

町田市の主要な河川である鶴見川、恩田川、境川のBOD*環境基準は、鶴見川、境川が8mg/L 以下(D類型)、恩田川が5mg/L以下(C類型)となっています。

2007年度に鶴見川の水質が一時的に環境基準を上回りましたが、それ以外は環境基準を達成しています。

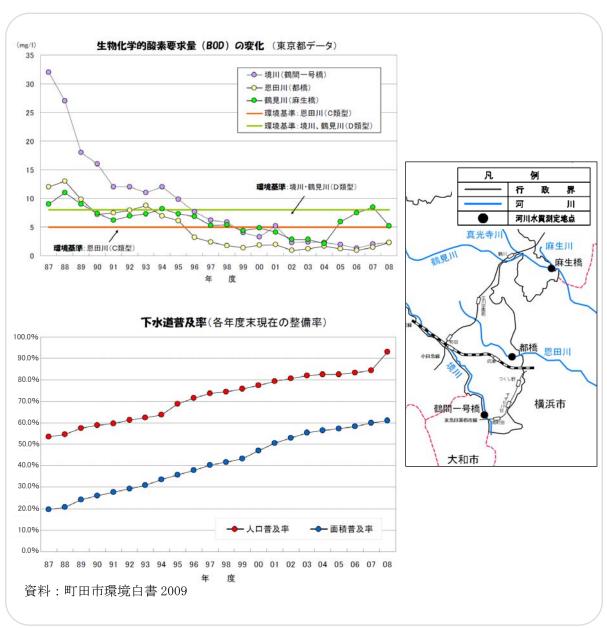


図 24 主要河川の位置と水質測定地点及びその水質の状況

市民等利用者への働きかけ

下水処理場が安定して汚水処理を行うには、利用者の方々に油脂類が汚水管の詰まりの原因となることや、下水処理場に有害物質が流入すると生物処理の妨げになること等を理解してもらい協力していただくことが必要です。

そのため、下水道の正しい使い方をホームページや広報に掲載して利用者に周知を図り協力を求めます。

また、有害物質等を取り扱う事業場に対して、立ち入り指導や排水検査を行うなど下水道法に基づく排水指導を実施します。

汚水管に油脂が推積した状態

下水道が正しく働き、みなさんに快適な生活をお届けするために下水道は正しく使用して下さい。 天ぷら油 流さないで下さい! 流しから油を流すと、排水管の詰まりや悪臭の原因になります。 洗 剤 適量を使用しましょう! 洗剤自体も汚れの一つです。下水の汚れは少ない方が処理経費が少なくて済み、処理水質も良くなります。計って適量をお使い下さい。 有害・有毒・危険物 下水道に流さないで下さい!

- ◇有害物質などを流すと、下水処理場はそれを処理する機能を持っていないので、放流水や汚泥に含まれて環境を汚染することになります。また、処理場は微生物で下水を処理しているので、微生物の働きを弱め、処理水質を悪化させます。
 - 工場などの排水は、法令(下水道法、町田市下水道条例)で水質が 規制されています。
- ◇ガソリン、灯油、シンナーなどは、爆発や火災の危険があります。
- ◇割り箸、野菜くず、ラード、紙おむつ、ビニール製品、生理用品等 は下水管を詰まらせます。
- ◇セメント、建設残士、排水槽汚泥等を流すと法律で罰せられます。 このような現場を目撃された方は下水道部に連絡して下さい。

市民等利用者へのお願い(冊子「町田市の下水道」より)

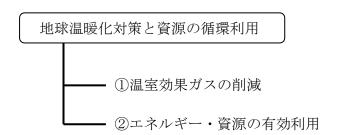
3. 地球温暖化対策と資源の循環利用

目標

環境負荷の少ない処理場運営を進め、地球環境の保全と循環型社会へ貢献します

概ね30年後の姿:環境に配慮した下水道になっている

目標設定の背景


私たちが便利で快適な生活を送るためには、大量のエネルギーが必要です。車や電車などを動かすガソリンや電気、身近なところではエアコンの使用など、様々な生活の場面でエネルギーや資源を使用することで二酸化炭素などの温室効果ガスが排出され、地球温暖化の原因となっています。

下水道事業でも汚水処理や汚泥の焼却過程で多くの温室効果ガスを排出していることから、温暖化対策が必要です。

また、汚泥や下水道工事の建設発生土など様々な資源が発生します。

そこで、地球温暖化の原因となる温室効果ガスの削減を図るとともに、エネルギー・資源 の有効利用を進め、循環型社会へ貢献することが求められています。

施策の体系

施策の展開

① 温室効果ガスの削減

- ・ 省エネルギー機器の導入を引き続き進めます。
- ・ 効率的な運転管理によって、消費電力や燃料の低減化を図ります。
- ・ 下水道建設工事では、低燃費型の建設機械を使用するなど、二酸化炭素の排出が少ない 施工方法の採用を引き続き促進します。

② エネルギー・資源の有効利用

- 下水処理場において、現在行っているエネルギー・資源の有効利用を引き続き進めます。
- ・ 下水道工事の際の建設発生土など、**建設副産物の有効利用を引き続き進めます。
- ・ 最新技術の調査、検討や下水道資源(処理水、汚泥等)のニーズの調査を行い、導入効果の高い未利用エネルギー・資源の有効利用を進めます。

解説・・・・・・・・・・・・・・・・3. 地球温暖化対策と資源の循環利用

■温室効果ガス削減に向けた取り組み●

下水処理場は、汚水の処理に電気や燃料を使用するため、多くの二酸化炭素 (CO₂) を排出しています。

成瀬クリーンセンターと鶴見川クリーンセンターは、一定規模以上のエネルギーを使用する事業所であることから、エネルギーの使用の合理化に関する法律(省エネ法)に定められた「エネルギー管理指定工場」」として、年平均 1%以上のエネルギー消費原単位の改善が求められています。これまでも省エネ機器の導入や運転管理による省エネなど(表 3)により、エネルギー使用量を削減し、温室効果ガスの排出抑制に努めてきました。

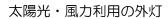
2008 年、東京都内から排出される二酸化炭素(CO_2)を削減するために、東京都環境確保条例 2 が改正され、2010 年度から「温室効果ガス排出総量削減義務と排出量取引制度」が始まりました。この条例では、2010-2014 年度の 5 年間(第一計画期間)で温室効果ガスを基準年度 3 から 6%削減する義務が課せられており、下水処理場はより一層の温室効果ガス削減が求められています。

その有効な対策の一つとして、汚泥の高温焼却化があります。

汚泥を焼却すると、一酸化二窒素 (N_20) という温室効果ガスが排出されます。一酸化二窒素 (N_20) は二酸化炭素 $(C0_2)$ の 310 倍もの温室効果があるため、温暖化への影響が大きい温室効果ガスです。汚泥の高温焼却化とは、焼却炉の燃焼温度を通常の 800 から 850 で以上の高温に上げて運転をする方法のことをいい、これにより一酸化二窒素 (N_20) の排出量を半分以下に抑えることができます。

鶴見川クリーンセンターでは 2006 年度から高温焼却化を実施していますが、成瀬クリーンセンターの焼却炉は、稼動後 28 年が経過しているため老朽化が著しく、高温焼却運転に対応できていません。汚泥の高温焼却化は、下水処理場の地球温暖化対策の有効な手段であることから、焼却設備更新時には高温焼却化を図ります。

34


¹ 年間のエネルキー使用量が原油換算で 1500kℓ 以上が第二種、3000kℓ 以上が第一種。

² 都民の健康と安全を確保する環境に関する条例

³ 基準排出量 成瀬クリーンセンター 6,277t/年(2002-2004 年度)、鶴見川クリーンセンター 2,502t/年(2004-2006 年度)

表 3 実施中の省エネルギー対策

	項目	対策内容
成瀬クリ	省エネ機器の導入	省エネ型照明への更新 ポンプ電動機の更新による電力削減 散気管の更新による電力削減 ブロワ電動機の更新による電力削減 脱臭装置の更新による電力削減 高効率変圧器への更新による電力削減 太陽光・風力利用の外灯の導入
クリーンセンター	運転管理による 省エネルギー化	コンプレッサーの自動運転化による運転時間削減 換気ファンの運転時間削減 プロワ用冷却塔の運転時間削減 除塵機の運転時間削減 汚泥ポンプの運転時間削減 実験室装置の運転時間削減 冷温水発生器の冷水温度変更による燃料削減 脱水汚泥の含水率低減による燃料削減 焼却炉の燃焼空気量調整による燃料削減
	日常の省エネ	照明のこまめな消灯
鶴	省エネ機器の導入	省エネ型照明への更新 散気管の更新による電力削減 空調設備のガスヒートポンプ方式への更新による燃料削減
鶴見川クリーンセン	運転管理による 省エネルギー化	換気ファンの運転時間削減 ポンプの流量制御による流入ピーク電力削減 焼却炉の燃焼空気量調整による燃料削減 冷温水発生器燃焼設備の空気比管理による燃料削減 冷温水発生器の冷水温度変更による燃料削減 コンプレッサーの吐出圧の低減による電力削減
ンター	日常の省エネ	照明のこまめな消灯 外灯の点灯時間の短縮
	その他の対策	汚泥の高温焼却(850℃以上)による一酸化二窒素の削減

省エネ型照明

未利用の資源・エネルギーの有効利用

表 4 未利用資源・エネルギーの利用方法一覧(例)

分類	項目	利用する 資源・エネルギー	概要	備考
	セメント原材料	焼却灰	汚泥焼却灰をセメント製造の主原料で ある粘土の代替として利用 一部は軽量骨材として利用	両処理場で実施中
資源循環	セメント 原材料	[※] 沈砂汚泥 脱水汚泥	沈砂汚泥・脱水汚泥を他の廃棄物と混ぜ セメントの原料及び下層路盤材として 利用	両処理場で 2011 年度から実施
	炭化炉	汚泥	汚泥を炭化炉で蒸し焼きにして石炭の 代替燃料となる炭化物を製造し、石炭火 力発電所に燃料として供給	検討中
	りんの回収	りん	汚泥中に濃縮されたりんを回収し、肥料 や肥料原料等に利用	検討中
	プラント 用水	再生水	処理水の一部をろ過して、機器の冷却、 洗浄用水として利用	両処理場で実施中
処理水の	洗浄用水	再生水	処理水の一部をろ過して、管路清掃の洗 浄用水として利用	両処理場で実施中
再利用	水洗用水	再生水	水洗便所等の洗浄用途に用いる	検討中
	散水用水	再生水	道路、公園、グラウンド等の散水用水と して利用	検討中
未利用 エネルギー	汚泥焼却炉 の廃熱利用 (冷暖房用)	汚泥	焼却炉から出る排ガスの熱(廃熱)を回収して、温水を作り、暖房用の熱源として使用	成瀬クリーンセンター の一部で利用中
の活用			下水処理場屋上の空きスペースに設置 して発電を行う	検討中
	マイクロ水力発電	汚水 処理水	最終沈殿池から塩素混和池にかけての 水路に設置し、落差(水位差)によって 発電を行う	検討中
	汚泥焼却炉 の排ガス による発電	汚泥	焼却炉から出る排ガスの熱 (廃熱) をボイラーで回収、蒸気を発生させ、蒸気タービン発電機へ供給し発電を行う	検討中

太陽光発電設備の例

葛西水再生センター(東京都)

資料:アースプラン 2010.東京都下水道局

水力発電の例

東京都下水道局技術調査年報 2003 より

資料:下水道における地球温暖化防止推進計画策 定の手引き.平成21年3月

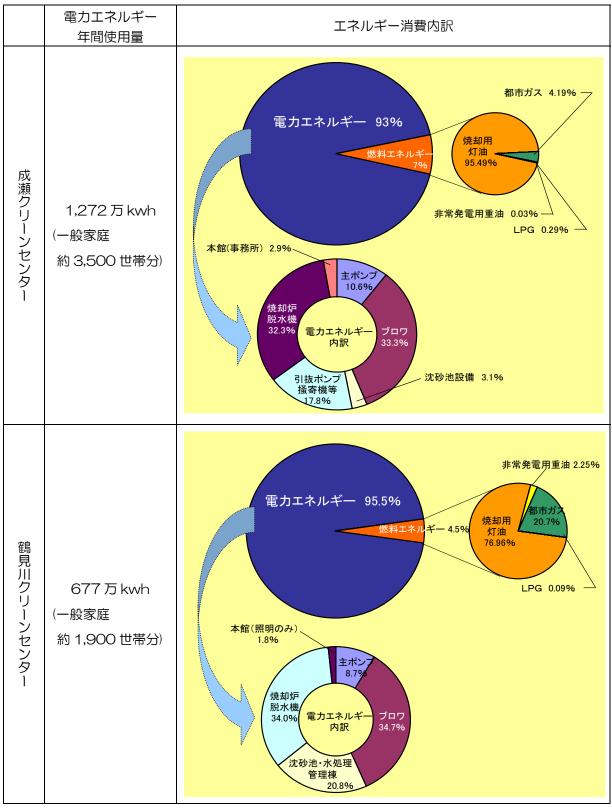


図 25 消費量の割合(2009年度実績値より算出)

4. 浸水対策の推進

目標

総合的な取り組みにより、浸水被害の軽減を図ります

概ね30年後の姿:50mm/hの雨が降っても浸水被害が発生しなくなっている

目標設定の背景

都市化の進展や近年多発するゲリラ豪雨を原因とした都市型の浸水被害が大きな社会問題 となっており、その対策が望まれています。

総合的な治水対策として、河川管理者は河川等の整備を、町田市は雨水管整備を始め、 **雨水貯留・浸透施設の設置、土地利用の誘導、緑地保全などの取り組みを進めていますが、 依然として浸水被害が発生していることから、より効果的な取り組みが求められています。

しかし、河川整備や雨水管整備など、行政(公助)によるハード対策には相当の費用と時間が必要となります。

そのため、早期に浸水被害の軽減効果を上げる取り組みとして、従来の公助によるハード 対策に加え既存調整池の改造による機能拡充などの他、地域住民(自助・共助)による雨水 浸透施設設置等のハード対策や地域住民と行政(自助・共助・公助)による側溝清掃等のソ フト対策を総合的に進めることが必要です。

また、境川については市内の他の河川より整備が遅れており、現状では雨水管の整備効果を最大限に発揮できていません。そのため、早期整備の実現に向け、河川管理者に対する要請手法の見直しが必要となっています。

施策の展開

① 雨水管整備の推進

- ・ 浸水履歴を考慮した雨水管整備を進めます。
- ・ 雨水管整備の効果を上げるために、河川流域の各市と連携し、河川管理者へ河川整備を 要請します。
- ・ 雨水整備に合わせた親水施設の整備を進めます。

② 雨水貯留・浸透施設の整備促進

- ・ 既存調整池を改造し、機能拡充を図ります。
- ・ 他部局と連携し、雨水貯留・浸透施設の整備を進めます。
- ・ 民間による雨水貯留・浸透施設の整備を引き続き促進します。

③ 水害時対応体制の構築

- ・ 自助を啓発する広報活動の充実を図ります。
- ・ 建設部と連携し、豪雨前に重点箇所のパトロールを実施します。

解説・・・・・・・・・・・・・・・・・・・・・・・ 4. 浸水対策の推進

浸水対策の考え方◆

浸水対策には、施設を整備する「ハード対策」と施設整備以外の「ソフト対策」とがあります。

「ハード対策」には、既存施設の改造のように費用や時間があまりかからないでできる「短期的な対策」と河川や雨水管整備のように相当の費用と時間が必要となる「中・長期的な対策」とが、「ソフト対策」には、道路側溝の清掃のように施設機能を確保するための対策と土のうによる止水のように発生する被害を軽減するための対策とがあります。

				M & C & C & C & C & C & C & C & C & C &	
	自分の身を守る「自助」		行政による対策「公助」		
		互いに助け合う「共助」	短期的な対策	中・長期的な対策	
ハード対策	・浸水被害の最小化	・雨水貯留・浸透施設の設置	・既存調整池の改造 ・道路側溝等の改良、増設	・雨水管の新設・既設雨水管能力の増強	
ソフト対策	・浸水被害の軽減・施設機能の保持	・道路側溝等の清掃・民有緑地の保全・敷地内の緑化・土のう等による自己防衛	 ・雨水管の内部清掃 ・豪雨前パトロール ・情報の提供、内容の充実 ・土のうの提供 ・緊急資材の配備 ・可搬式ポンプの配備) ・民間による雨水貯留・ 浸透施設設置の促進 ・河川整備の要請 	・土地利用の誘導・緑地の保全	

表 5 自助・共助・公助とハード対策・ソフト対策の関係

河川整備や雨水管整備といった行政によるハード対策は時間雨量約50mmの降雨(概ね5年に1回の確率で発生)を目標に進めていますが、近年のゲリラ豪雨と呼ばれる局所・集中的な豪雨への対応が難しくなっていることから、多様な主体と連携しハード対策及びソフト対策を総合的に用いて、効率的に浸水被害の最小化を図ることが必要です。

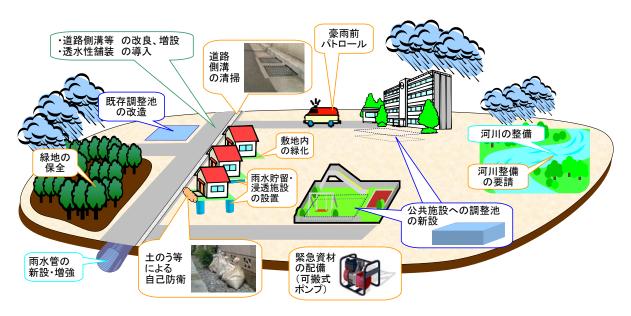
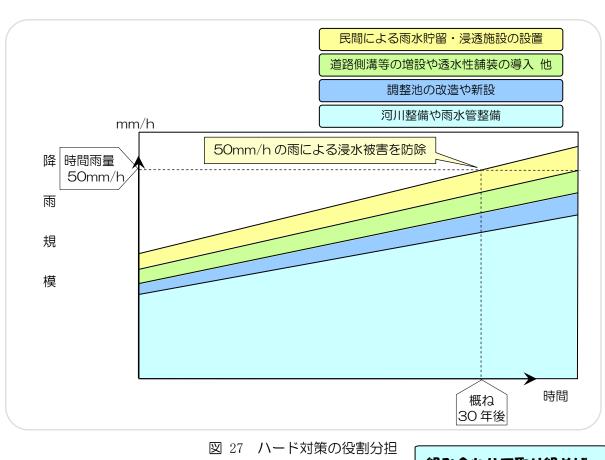



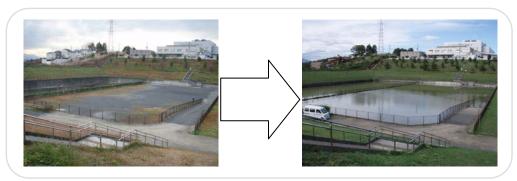
図 26 浸水対策の概要(イメージ図)

浸水被害を少しでも減らすために

雨水管は汚水管と違い口径が大きいことと汚水管整備を優先してきたことから、現在進めている雨水管の整備にはまだまだ相当な費用と時間が必要な状況です。

小山地区で整備中の雨水管(口径2,600mm×2,600mm)

そのため、雨水管整備を進めるとともに、雨水管を補完する雨水流出抑制施設によって浸水に対する安全度の向上を図ります。


その一つとして、既存調整池の改造があります。

町田市管理の 109 ヶ所の調整池の大半は、宅地造成によって低下する土地の保水能力、浸透能力を補うために民間が設置し移管を受けたものです。これらの調整池の中には、改造によりさらに有効に活用できる施設もあることから、貯留量等を再計算し、これまで以上に機能するように改造します。

また、学校や公園などには雨水貯留・浸透施設を設置済みですが、これらの公共施設の建 替や新設に併せて、今まで以上の貯留量をもった施設の設置を検討していきます。

この他、起伏に富んだ地区では道路上に降った雨が地表を流れ低地に貯まってしまうことから、道路側溝や集水ますの改良や増設を行い、効果的に雨水管に集められるようにします。

さらに、開発時や家の建築時に宅地内の雨水処理として雨水貯留・浸透施設を設置することや、敷地内を緑化し雨を地面に浸透させることによっても浸水被害の軽減を図ることができます。

改造によりこれまで以上に貯留するようになった調整池

浸水対策施設の機能を発揮するために

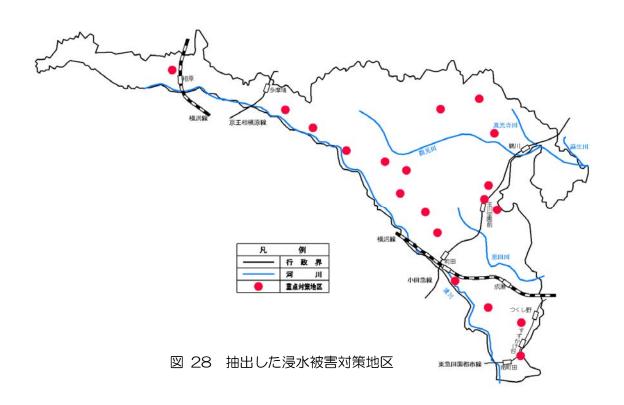
道路に降った雨は、道路側溝や集水ますから雨水管に集められ、河川に放流されます。

しかし、降雨時に道路側溝等に落ち葉やビニール等のごみが集まると、雨水の流れが悪くなり、道路上に水が溢れてしまいます。

そこで、町田市では、「排水機能を確保し浸水被害を軽減すること」を目的に、台風等の豪雨が予想される際と定期点検として年3回、冠水等が発生しやすい箇所を重点的にパトロールを行い、道路側溝等や水路にあるスクリーンのごみや落ち葉を除去し、目詰まりの防止を図ります。

また、「雨水貯留機能を確保し下流域での浸水被害を軽減すること」を目的に、市管理の調整池 109 ヶ所を計画的に土砂の浚渫を行うとともに、月1回の点検時に放流口に溜まったごみや落ち葉を除去します。

雨に対する安全度を少しでも上げるため、市民の皆様に身近な道路等の清掃活動の重要性 を理解してもらい、協力が得られるよう啓発を行っていきます。



豪雨前のパトロール

作業風景の写真を追加する

●浸水被害対策地区と設定の考え方●

過去 15 年間 (1994 年~2008 年) の浸水被害箇所を降雨規模と被害状況とを考慮して分析 し、浸水被害対策を図るべき地区を抽出し、この地区を優先に浸水対策を進めます。

1994年~2008年の 15年間に、市に浸水被害 の連絡のあった箇所を調査 し、浸水被害の状況および 降雨規模に応じたポイント 化による定量的な評価に より、19地区の浸水被害 対策地区の選定を行いま した。

浸水被害発生箇所の抽出 15年間で浸水被害923ヶ所

<u>₹</u>

ポイント化による定量的評価

口降雨規模による評価

50 mm/h 以上 ×1 ポイント

30~50 mm/h ×3 f° 1ント

30 mm/h 未満 ×5 ポイント

口被害状況による評価

道路冠水 ×1 ポイント

床下浸水 ×3 ポイント

床上浸水 ×5 ポイント

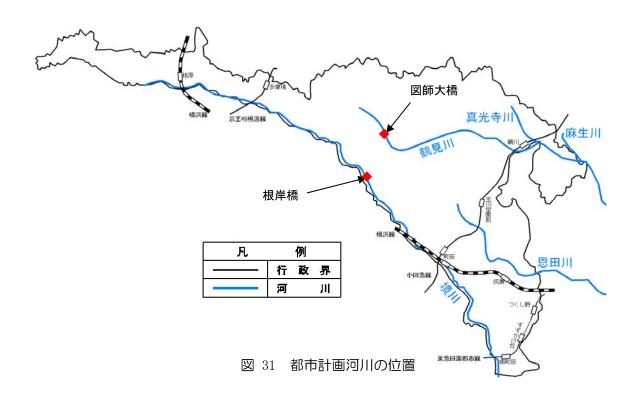
例1:100mmの降雨で床下浸水が1件発生

 $1\times1\times3=3$ ポイント

例 2:10mm の降雨で床上浸水が 2 件発生

 $2\times5\times5=50$ ポイント

浸水被害対策地区の選定 ポイントの高い 19 地区を抽出


図 29 浸水被害対策地区設定の考え方

都市計画河川の整備状況

町田市には、五つの都市計画河川があり、特に境川については、市内の根岸橋までは時間 雨量約 50mm の河川整備が済んでいますが、都県境より下流側(神奈川県管理区間)は河川 整備が済んでいないことから、雨水管の能力が発揮できず、改修が必要な状況です。

図 30 河川の整備状況(2010年12月1日時点)

土地利用状況と降雨状況の変化

降った雨水を保水し、また地下へと浸透させていた田・畑・山林が宅地化されることによって、雨水の流出量が増えています。

また、近年、全国的に集中豪雨が多発する傾向にあるため、浸水被害の発生が懸念されています。

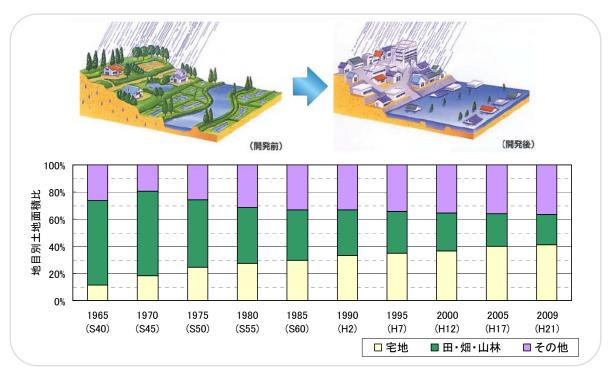
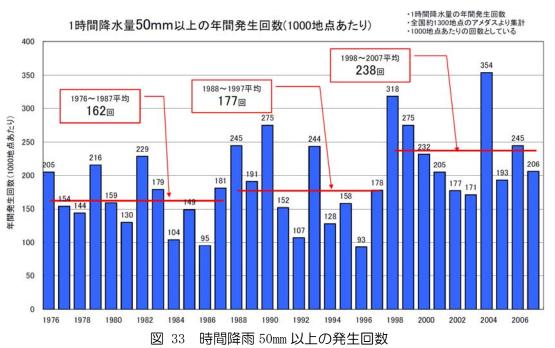



図 32 土地利用状況の変化(地目別土地面積の割合)

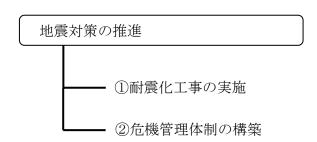
出典:気候変動監視レポート2007.気象庁

5. 地震対策の推進

目標

施設の耐震化と危機管理体制の強化を進め、地震による被害の最小化を図ります

概ね30年後の姿: 地震が発生した場合でも下水道が使用できるようになっている


目標設定の背景

大規模地震により下水道施設が被災した場合、下水処理場からの未処理汚水の河川への流 出や、下水道管の破損を原因とした道路陥没による緊急車両の交通障害、トイレの使用制限 など生活や社会活動に大きな影響を及ぼします。

このため、施設の耐震化を進め、大規模地震が発生した場合でも下水道が使用(流下能力と汚水処理能力を確保)できるように、被害の最小化を図る必要があります。

また、災害時に速やかに対応できる危機管理体制の強化も進める必要があります。

施策の体系

施策の展開

① 耐震化工事の実施

- ・ 下水処理場、ポンプ場の耐震化を進めます。
- ・ 下水道管の重要箇所(幹線、*緊急輸送路、河川下、軌道下)の耐震化を進めます。
- ・ 上記以外の箇所については、下水道管を延命化するための対策を行う際に、耐震機能を 付加していきます。
- ・ 町田市地域防災計画に定められた重要拠点(防災拠点等)からの下水道管の耐震化を進めます。

② 危機管理体制の構築

- ・ 災害時の対応体制などを定めた下水道*BCP(業務継続計画)を策定し、これを推進します。
- ・ 避難所でのトイレ問題を改善するため、マンホールトイレの整備を進めます。

解説・・・・・・・・・・・・・・・・・・・・・・ 5. 地震対策の推進

◆地震対策の概要◆

兵庫県南部地震(阪神・淡路大震災、1995年1月17日)をきっかけに、下水道施設の耐震基準が強化されたため、それ以前に整備された施設については、耐震性能の確保が求められています。

しかし、すべての重要な施設の耐震化を行うには、多くの時間と多額の費用がかかることから、重要かつ緊急性の高い施設を優先して、段階的に取り組みます。

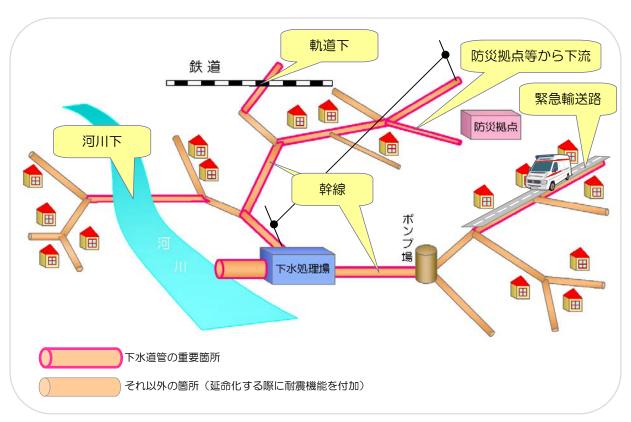
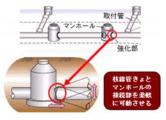


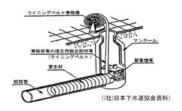
図 34 地震対策の概要(イメージ図)

地震対策の内容(例)

<影響>

地震によって下水道管が被災した場合、下水道管の破損を原因とした道路陥没による交通障害や、トイレの使用制限など社会生活に大きな影響を及ぼします。




下水道管の損傷による道路陥没

下水道管

<対策方法>

マンホールと下水道管との接続部への可とう性継手の設置や耐震性を考慮した下水道管の更正工法の実施により、地震が起きた場合でも下水の流下能力を確保します。

下水道管の耐震補強例

震性能

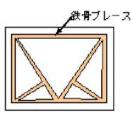
耐

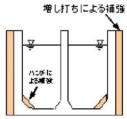
能の確

保

<影響>

地震によって下水処理場が損傷した場合、管理棟においては事務室として利用し、また、 処理施設上部においてはテニスコートとして一般開放しているため、人命に多大な影響を与 えます。また、処理施設に損傷をきたした場合は、未処理汚水が河川へ流出する恐れがあり ます。




下水処理場の損傷状況

下水処理場

<対策方法>

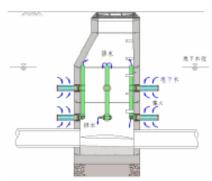
管理棟等建築物のブレース補強や処理施設の増し打ち補強などを行うことにより、処理施設の倒壊や損傷を防ぎ、地震時においても人命を確保し、また、汚水処理を適切に行える機能を確保します。

下水処理場の耐震補強例

<影響>

地下水位を含んだ砂質地盤に、強い揺れが働くことで地盤が液状化し、マンホール側壁と地盤との摩擦抵抗が失われ、比重の軽いマンホールが浮上します。

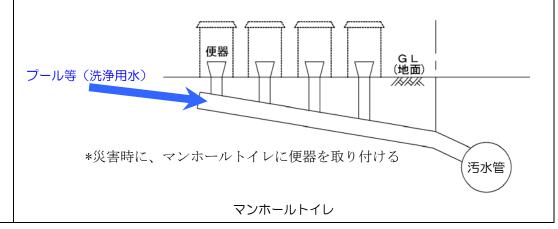
道路に埋設されたマンホールが浮上することにより、車両の通行が阻害され、消防・救急活動や応急復旧活動に支障をきたす恐れがあります。



マンホール浮上状況

<対策方法>

地震によって発生するマンホール周辺地盤の過剰間隙水を地盤内に設置した集水管により 集水し、マンホール内部に排水することで、マンホール側壁と地盤との摩擦抵抗の低下を抑 制し、マンホールの浮き上がり被害を防止します。


マンホール浮上防止対策例

<影響>

汲み取り式の仮設トイレの場合、汚物が急速に溜まるため衛生状態の悪化を招くことや、トイレが不足した場合、排泄を我慢することによる健康被害を起こす恐れがあります。

<対策方法>

大規模地震の発生に備え、避難所等に速やかに仮設トイレが設置できるよう、マンホールトイレを設置します。

液状化対策

避難所でのトイレ問題の改善

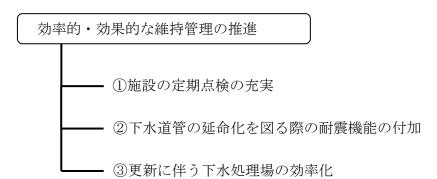
6. 効率的・効果的な維持管理の推進

目標

予防保全型の維持管理を進め、安定的な機能確保を図ります

概ね30年後の姿: 突発的な事故が発生しないようになっている

目標設定の背景


下水道は、生活に欠かせない施設であり、その機能を持続的に確保することが必要です。 現在、2ヶ所の下水処理場、1ヶ所のポンプ場、約1,488kmの下水道管があり、新たな施設の整備により、維持管理すべき下水道施設はさらに増加します。

施設を適切に管理しつつ、施設の延命化を考慮した老朽化への対応や、耐震機能の付加が求められています。

このため、施設機能を維持し事故を未然に防ぐ※予防保全型の維持管理が必要です。

さらに、2 ヶ所ある下水処理場については、汚水処理方式や機能集約などあらゆる可能性 を考慮して、維持管理の効率化を図ることが求められています。

施策の体系

施策の展開

① 施設の定期点検の充実

- ・ 下水道管の点検頻度の充実と点検結果を活用した予防保全型の維持管理を進めます。
- ・ 下水処理場の点検データの蓄積とその分析による予防保全型の維持管理を進めます。

② 下水道管の延命化を図る際の耐震機能の付加

・ 下水道管を延命化するための対策を行う際は、耐震機能を付加していきます。

③ 更新に伴う下水処理場の効率化

- ・ 2 ヶ所の下水処理場の汚水処理方式や機能集約などあらゆる可能性を考慮した更新計画を策定し、維持管理の効率化を図ります。
- ・ 最新技術の調査、検討を行い、効率化を目指します。

解説

6. 効率的・効果的な維持管理の推進

維持管理の必要性

下水道施設の耐用年数は、設備が10~30年程度、下水道管や構造物は50年となっています。

1964年の下水道事業着手時に整備した下水道管は耐用年数を迎えようとしています。また、1977年には成瀬クリーンセンター、1990年には鶴見川クリーンセンターと鶴川ポンプ場が稼動しており、それぞれが20~30年を経過し、設備の更新時期を迎えています。

従来の維持管理は破損・故障が発生した際にその部分を修理・更新する「発生対応型」で 行ってきました。しかし、施設の老朽化に伴う重大な事故を未然に防ぐとともに、改築更新 に係るコストの平準化を図るため、「予防保全型」の維持管理が必要となっています。

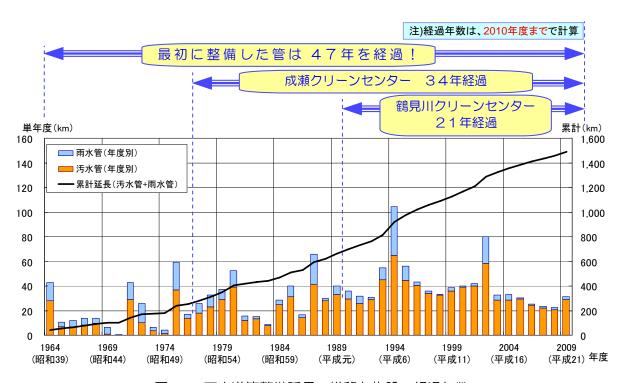


図 35 下水道管整備延長の推移と施設の経過年数

下水道予防保全型の維持管理による効果・

下水道施設の健全度に関する点検・調査を行い、劣化予測や異常の早期発見により、予防保全型の維持管理を行うことが重要です。

予防保全型の維持管理には、以下の効果があります。

- ①日常生活や社会活動に重大な影響を及ぼす事故発生の防止
- ②下水道施設の機能停止の防止
- ③**ライフサイクルコストの低減を考慮した計画的な改築更新
- ④施設の延命化を考慮した計画的な改築更新
- ⑤耐震化等の機能向上を考慮した計画的な改築更新

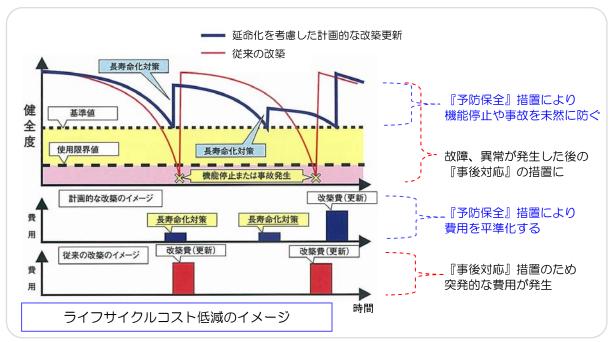


図 36 下水道施設の延命化(長寿命化)を考慮した計画的な改築更新(ストックマネジメント)

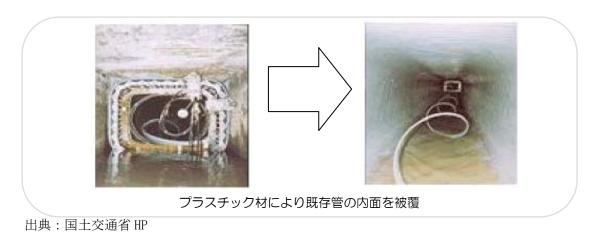


図 37 施設の延命化(更生工法の施工事例)

施設別維持管理の取り組み

下水道管の目視点検は、管の損傷や堆積物、あるいは下水の流下状況を観察し、管路施設の状態を把握するもので、概ね5年に1回の周期で実施しています。

水道

管

下

今後、埋設して30年以上を経過した古い下水道 管が増えることから、点検頻度を上げ異常箇所の早 期発見に努めます。

目視点検により損傷や老朽化した箇所が多いと 判明した地域について、テレビカメラを使用した詳 細調査を行い、予防保全型の維持管理を行います。

管と管のつなぎ 目から木の根が 侵入している様 子。

っ。 汚水から栄養を 吸収し、管の詰まの し、管路路没の れがあります。

車の振動等により、管がずれた様子。

管の詰まりや 道路陥没の恐 れがあります。

テレビカメラ調査で判明した異常箇所(左の写真は根の侵入、右は管のずれ)

下水処理場・ポンプ場

点検業務(日常点検、定期点検、委託等に よる点検)の結果・設備台帳・履歴(故障、 修繕、更新)等を合わせた総合的なデータ管 理・分析を行うことで、予防保全型の維持管 理を行います。

図 38 維持管理の状況

ぼくたちの健康管理って、とっても重要なんだね!

●下水処理場の効率的な運用方法に関する検討●

処理。

2 ヶ所の下水処理場は、老朽化や水質向上・温暖化へ対応するため、設備更新が必要となっています。

更新にあたっては、一時的に必要となる更新費用だけでなく長期的な維持管理費用も考慮 して、効率化を図る必要があります。

将来の下水処理場のあり方について、あらゆる角度から検討を行った結果を以下に示します。

検討ケース 概要 検討結果 ・これまで通り2処理場で汚水及び汚泥処理を行う。 詳 現行どおり Α 細 必要に応じて汚水が流入する区域(処理区域)の分担を見直す。 検 汚泥処理機能 討 ・汚水処理は2処理場で行い、汚泥処理は集約する。 В の統合 ・1ヶ所の下水処理場で汚水及び汚泥処理を行う。 下水処理場の C (下水処理場を1ヶ所に統合し、もう1ヶ所はポンプ場に変更) 統合 ・流域下水道(東京都)の下水処理場で処理。 初期投資が大き (2処理場はポンプ場に変更) く、経営上困難。 ・成瀬クリーンセンターで処理する汚水を、横浜市の下水処理場 また、他市の場合、 で処理。 町田市分を受け入 D 他市との連携 ・鶴見川クリーンセンターで処理する汚水を、川崎市の下水処理 れることが困難な 場で処理。 下水処理場もあ り。 ・2 処理場で処理する汚水を、横浜市及び川崎市の下水処理場で

・神奈川県の流域下水道の下水処理場(茅ヶ崎市)で処理。

表 6 下水処理場の効率的な運用方法に関する検討

7. 持続可能な下水道財政の確立

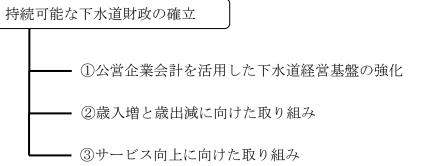
目標

下水道財政の健全化を図り、安定的なサービスを提供します

概ね30年後の姿:公共性を担保しつつ独立採算の経営ができている

目標設定の背景

下水道処理人口は、行政人口の約94%に達したものの、少子化等を背景とした人口の伸び 悩みや、節水型社会を背景とした水使用量の減少傾向を要因として、歳入の根幹である下水 道使用料の伸びは鈍化傾向にあります。


さらに、過去の建設で発行した起債は現在、残高 537 億円となっており、これまでどおりの事業規模で整備を進めると、将来返済すべき借金も増加の一途をたどります。

そのため、健全な経営状態で環境に配慮した施設整備による「より良い環境」と、災害に強いまちづくりによる「安心な暮らし」を次世代につなげるためには、起債残高を削減することが求められます。

このような状況を踏まえ、これまでの事業のあり方や方向性を見直し、持続可能な財政の 確立を目指すことが必要となっています。

加えて、利用者の方々に安定的により良いサービスを提供していくために、職員の経営意 識向上や人材育成などに取り組むことも必要となっています。

施策の体系

施策の展開

① 公営企業会計を活用した下水道経営基盤の強化

- ・ 経営状況を明らかにし、使用料の定期的な検証を実施していきます。
- ・ 事業の選択と投資の集中に取り組みます。
- ・ 予防保全型の管理を行い、維持管理コストの平準化を図ります(ストックマネジメント)。
- ・ 職員の経営意識の向上を図ります。

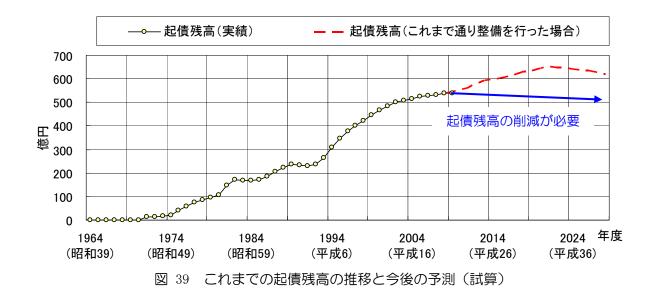
② 歳入増と歳出減に向けた取り組み

- ・ 保有する下水道資産(土地)の有効活用を進めます。
- ・ 未接続家屋の汚水管への接続を指導します。
- ・ 施設整備や維持管理コストの削減に取り組みます。
- ・ 大口の委託契約内容の精査、新たな委託手法の導入など、委託コストの削減に取り組み ます。

③ サービス向上に向けた取り組み

- ・ 技術の継承と職員の人材育成により、サービス向上を図ります。
- ・ 市民等の利用者の方々に下水道を理解して頂くために、積極的に PR 活動や情報提供を 行います。

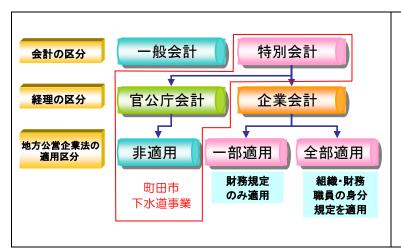
解説


7. 持続可能な下水道財政の確立

起債残高削減の必要性

2009年度末で、起債残高は約537億円となっています。

これまでどおりの事業規模で整備を行うと、起債残高が現状よりも増え、下水道財政が悪化するものと予測されます。


このため、今後は毎年の起債発行額を抑制し、起債残高を削減する必要があります。

公営企業会計の導入とその効果

下水道事業は、「公営企業(地方財政法)」とされています。このため、事業に伴う収入によってその経費を賄い、事業を継続していく「独立採算制」の原則が適用されています。

しかし、現在の町田市下水道事業は現金の収支のみを記帳する「官公庁会計」となっており、企業としての財務・経営状況がわかりづらくなっていました。

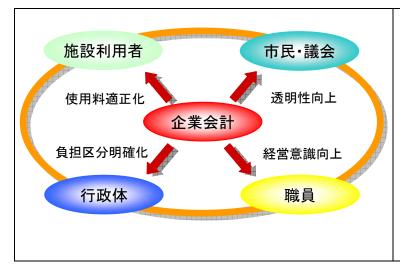

- ・下水道事業の経理は、特別会計で 行われます(地方財政法)。
- ・その経理の方法は、「官公庁会計方式(地方自治法)」と「企業会計方式(*地方公営企業法)」のいずれかを選択できます。

図 40 会計と経理の区分(現状)

2013年度に市街化区域の汚水管整備が概ね完了する下水道事業は、建設段階から維持管理段階へシフトしていくことが求められています。

厳しい財政状況のなか、これまでに建設した下水道施設を適正かつ効率的に維持して健全な下水道経営を進めるため、企業会計の導入を図る必要があります。

企業会計の導入により、図 41 のような効果が見込まれます。

●企業会計導入による効果

- ・経営状況や資産状況の明確化
- ・適正な損益計算と原価計算により、 利用者の適正な負担が算定可能
- ・資産、負債及び資本の明確化による 適正な使用料の算出が可能
- ・企業としての独立採算制が高まる
- ・予算の弾力化による事業の執行 効率の向上
- ・職員の経営意識の向上

図 41 企業会計導入の効果(下水道事業)

●歳入増と歳出減に向けた取り組み●

人口増の鈍化や給水量の落ち込み等を要因とした使用料収入の伸び悩みから、歳入増と歳 出減に向けた取り組みが求められます。

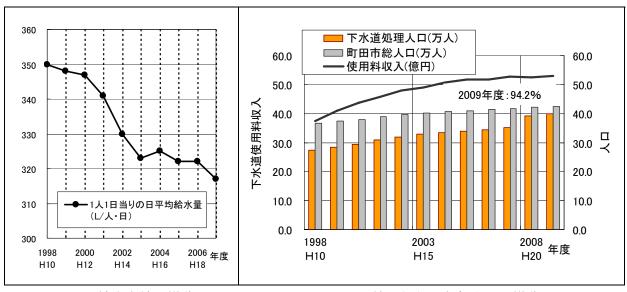


図 42 給水実績の推移

図 43 使用料収入と各人口の推移

表 6 歳入増と歳出減に向けた取り組みの内容

保有する下水道資産	①駐車場用地などとしての利用
(土地)の有効活用	②看板用地としての利用
	③自治会・町内会へ貸し出し、花壇や農園などの公益的な利用
未接続家屋の汚水管	未接続家屋の解消に向けた戸別訪問などによる接続指導
への接続指導	
施設整備・維持管理	①工事技術等の進歩により可能となった小口径マンホールの活用による
コストの削減	整備コストの削減
	②下水処理場の維持管理ノウハウの蓄積による薬品や燃料の使用量の削減
委託コストの削減	①大口の委託契約の契約内容の精査
	・契約内容(仕様書)の見直し
	・直営と委託との業務分担の見直し
	・契約手法の見直し(一般競争入札、*プロポーザル方式等の採用)
	②下水道施設等の維持管理への新たな委託手法の導入検討(詳細は次ページ)
	・包括的民間委託対象施設:下水処理場
	・指定管理者制度対象施設:下水処理場
	・PFI 方式······対象施設:合併処理浄化槽

新たな委託手法導入の背景

これまでの委託は仕様書で業務内容を細かく定め、その内容通り実施する「仕様発注」で 行われていたため、民間事業者の創意工夫の余地はなく、仕様通り実施した場合の責任は発 注者である行政にありました。

しかし、民間事業者の創意工夫を活かし、事業の効率化やサービスの向上を図ることを目的に、新たな委託手法を取り入れる自治体が増えています。

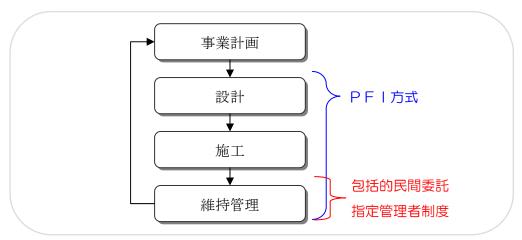


図 44 民間活力による委託範囲

表 7 新たな委託手法の概要

包括的	性能発注方式による複数年契約の委託のこと。
民間委託	①性能を要求水準として指定し、具体的な実施方法は民間の自由裁量とする発注方式(性能発
	注方式)。
	②委託期間は、委託側の事務軽減及び受託側の維持管理ノウハウ構築、安定的な業務遂行を考
	慮し、原則として複数年(3~5 年程度)。
指定管理者	地方公共団体が指定する法人その他の団体(指定管理者)に施設管理を行わせること。
制度	
PFI 方式	Private Finance Initiative の略で、民間資金による社会資本の整備のこと。
	従来、国や地方公共団体が直接担当してきた施設の設計・建設・維持管理・運営を民間の資金、
	経営及び技術的ノウハウを活用し、実施させること。

注)性能発注と仕様発注

性能発注:民間事業者が施設を適切に運転し、一定の性能を発揮することができるのであれば、 施設の運転方法の詳細等については民間事業者の自由裁量に任せるという考え方

仕様発注:あらかじめ人員の配置や業務内容・実施方法等を詳細に定めて発注する方法であり、 民間事業者は仕様書に記載された内容を満足するための役務の提供を行うという考え方

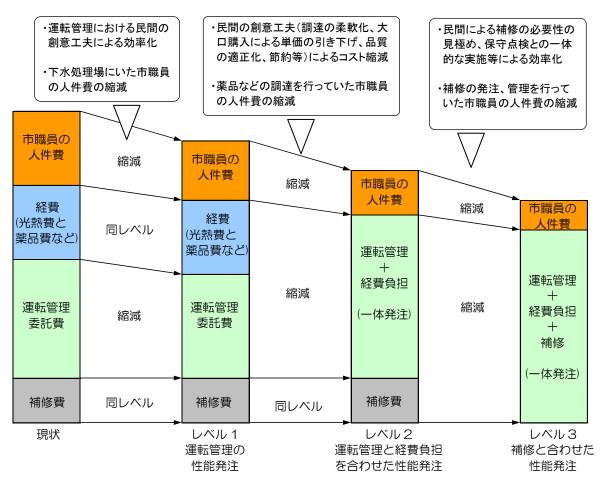


図 45 維持管理業務におけるコスト削減イメージ(包括的民間委託の例)

●技術の継承と職員の人材育成について◆

下水道事業が始まってから 50 年近くが経ち、生活に欠かせない下水道の機能を持続的に確保するためにも、維持管理の重要度は増しています。

適正な維持管理により、安定した下水道機能を確保するためには、職員の持つ技術の継承 や能力の向上を図ることが必要です。

そのため、次のようなことに取り組みます。

- ・退職技術者が持つ、貴重な経験や技術力を生かすため、職場内研修の実施や再雇用制度などを活用した技術の円滑な継承
- ・職員の技術や能力の向上を図るため、研修会や講習会などへの積極的な参加
- ・これまで築き上げてきた下水道技術や一定の技術水準の確保に加えて、経営意識を有 する人材の育成
- ・委託化を見据えた、職員の監理指導能力の強化

市民等の利用者に向けた PR 活動や情報提供

利用者の方々に下水道への理解や関心を持ってもらうための努力を行います。

- ・ ホームページの充実による情報の発信
- ・ 広報紙を活用した情報の提供
- ・ 施設見学会の充実
- イベント、キャンペーンの場を利用した PR 活動

施設見学会の様子

第5章 進捗の管理について

本ビジョンは、概ね10年毎に状況を確認します。

なお、「図 1 計画策定の必要性 (P.3)」に示した状況や関連計画 (「図 2 下水道ビジョンと関連計画の位置付け <math>(P.5)」)の見直しにより、下水道ビジョンに大きな影響が生じた場合には見直しを行います。

アクションプランは、本ビジョンに基づき目標設定を行い、5年毎にその達成状況を確認・ 公表します。

2012(平成 24)年度

ビジョン・ アクションプラン 初年度

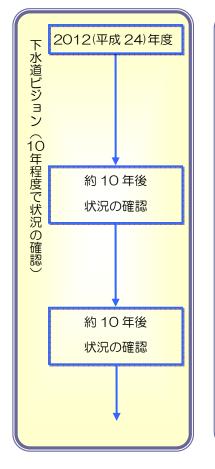


図 46 進捗の管理

第6章 資料編

1. 下水道ビジョン策定経過

1.1. 計画策定体制

(1) 検討組織の構成

上下水道部内で検討を行い、庁内の関連課長で構成する『検討幹事会』、副市長を座長として関連部長で構成する『策定委員会』の順で内容確認を行い、承認が得られた案を『策定懇談会』で議論。出された意見等を踏まえて策定した案を、パブリックコメントを経て、最終的に『経営会議』で決定する。

なお、特に下水道財政に関して専門的見地から意見を述べる役割として『経営アドバイザー』を置き、部内検討段階での財政面に関する助言を行う。

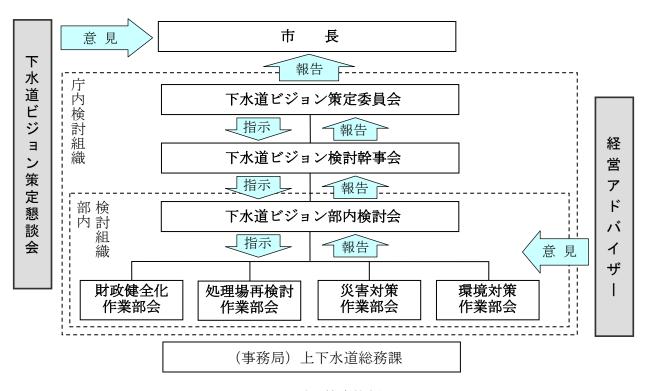


図 47 計画策定体制

(2) 町田市下水道ビジョン策定懇談会

① 懇談会の役割

『下水道ビジョン』及び『下水道アクションプラン』の策定にあたって、第三者の視点から意見する機関。

② 懇談会委員名簿(敬称略) 2010年11月1日時点

*会長

分 類	名 前	役 職 等	備考
	タカチホ ヤスナガ 高千穂 安長 *	玉川大学経営学部教授	
学識経験者	ナガオカ ヒロシ長岡裕	東京都市大学工学部教授	
于中联作生动失行	マツモト ノブコ 松本 暢子	大妻女子大学社会情報学部教授	
	イチョ タロウ 市古 太郎	首都大学東京都市環境学部助教	
町田市町内会・ 自治会連合会の代表	モリナガ ヒサエ 盛永 久恵	・町田市町内会・自治会連合会副会長 ・旭町中央町内会会長	町田市町内会・ 自治会連合会推薦
商工業者 その他事業者	マツダ ヒデユキ 松田 英行	•(株)松田設備 代表取締役 •町田商工会議所 建設業部会 部会長	町田商工会議所 推薦
公募市民	イシカワ アキラ 石川 旭		成瀬地区在住
→ → → → → → → → → → → → → → → → → → →	ワタナベ ヒロシ 渡辺 洋		三輪地区在住

③ 町田市下水道ビジョン策定懇談会設置要綱

町田市下水道ビジョン策定懇談会設置要綱

第1 設置

町田市下水道ビジョンの策定に関し、学識経験者等の意見を聴くため、町田市下水道ビジョン策定懇談会(以下「懇談会」という。)を置く。

第2 定義

この要綱において「町田市下水道ビジョン」とは、町田市の下水道事業を安定的かつ効率的に実施していくために策定する町田市下水道事業の総合的な計画で、おおむね30年間を計画期間として定めるものをいう。

第3 所掌事務

懇談会は、次に掲げる事項について調査、検討し、その結果を市長に報告する。

- (1) 町田市下水道ビジョンの策定に関すること。
- (2) 前号に掲げるもののほか、市長が必要と認める事項

第4 組織

- 1 懇談会は、委員8人以内をもって組織する。
- 2 委員は、次に掲げる者のうちから、市長が委嘱する。
- (1) 学識経験者 4人以内
- (2) 町田市町内会・自治会連合会の代表 1人
- (3) 商工業者その他の事業者 1人
- (4) 市民のうちから公募したもの 2人以内

第5 委員の任期

委員の任期は、懇談会が第3の規定による報告をしたときまでとする。

第6 会長

- 1 懇談会に会長を置き、委員の互選により定める。
- 2 会長は、懇談会を代表し、会務を総理する。
- 3 会長に事故があるときは、会長があらかじめ指名する委員が、その職務を代理する。

第7 会議

- 1 懇談会は、必要に応じ会長が招集する。
- 2 会長は、必要があると認めるときは、懇談会に委員以外の者の出席を求めることができる。

第8 庶務

懇談会の庶務は、上下水道部上下水道総務課において処理する。

第9 委任

この要綱に定めるもののほか、懇談会の運営に関し必要な事項は、会長が懇談会に諮って定める。

附則

この要綱は、2010年4月1日から施行する。

(3) 経営アドバイザー

① 経営アドバイザー設置の目的

下水道事業の総合計画『下水道ビジョン』を策定するにあたり、下水道財政の健全化や効率的な事業展開に関して、専門的見地からの意見を聞くため。

② 経営アドバイザーの役割

- (1) 健全な下水道財政のあるべき姿について経営的、効率的な観点からの助言。
- (2) 市で作成する、健全化に向けた下水道財政の見通しに対する助言。

③ 経営アドバイザー(敬称略)

公認会計士 青山 伸一

(4) 庁内検討体制

① 下水道ビジョン策定委員会

委員長	上下水道部担当副市長
委員	政策経営部長 政策経営部経営改革室長 財務部長 市民部防災安全担当部長 環境資源部長 都市づくり部長 上下水道部長

② 下水道ビジョン検討幹事会

幹事長	上下水道部長
幹事	政策経営部企画政策課長 政策経営部経営改革室担当課長 財務部財政課長 市民部防災安全課長 環境資源部環境総務課長 都市づくり部都市計画課長 下水道ビジョン部内検討会委員

③ 下水道ビジョン部内検討会

会 長	上下水道部長
委員	上下水道部上下水道総務課長 上下水道総務課担当課長 工務課長 工務課長 工務課長補佐 業務課長 水質管理課長 水再生課長 水再生課課長補佐

④ 作業部会の概要

作業部会名	財政健全化 作業部会	処理場再検討 作業部会	災害対策 作業部会	環境対策 作業部会 水質管理課長	
部会長	業務課長	水再生課長	工務課長		
部会員	上下水道総務課、 工務課、業務課、 水質管理課、 水再生課	上下水道総務課、 水質管理課、 水再生課	上下水道総務課、 工務課、 水質管理課、 水再生課	上下水道総務課、 工務課、業務課、 水質管理課、 水再生課	
所掌事務	効率的・効果的な 投資と経営基盤の 強化による安定し た経営の検討	あらゆる可能性を 視野に入れた最適 な下水処理場のあ り方の再検討	自然災害に強い下 水道施設の検討	環境に配慮した下 水道施設の検討	
具体的な 検討項目	・事業の優先度 ・支出の削減 ・収入の確保 ・起債の削減 など	・水処理の集約 ・汚泥の集約 ・処理区域の再編 など	・浸水対策 ・地震対策 ・安全面から見た 下水道施設の更新 など	・下水道と浄化槽の 役割分担・環境面から見た 下水道施設の更新 など	

⑤ 町田市下水道ビジョン策定委員会設置要綱

町田市下水道ビジョン策定委員会設置要綱

第1 設置

町田市下水道ビジョンの策定に資するため、町田市下水道ビジョン策定委員会(以下「委員会」という。)を置く。

第2 定義

この要綱において「町田市下水道ビジョン」とは、町田市の下水道事業を安定的かつ効率的に実施していくために策定する町田市下水道事業の総合的な計画で、おおむね30年間を計画期間として定めるものをいう。

第3 所掌事務

委員会は、次に掲げる事項について調査、検討し、その結果を市長に報告する。

- (1) 町田市下水道ビジョンの策定方針に関すること。
- (2) 町田市下水道ビジョンの案を策定すること。
- (3) 前2号に掲げるもののほか、市長が必要と認める事項

第4 組織

- 1 委員会は、委員長及び委員をもって組織する。
- 2 委員長及び委員は、次に掲げる職にある者をもって充てる。

委員長 上下水道部担当副市長

委員 政策経営部長 政策経営部経営改革室長 財務部長 市民部防災安全担当部 長 環境資源部長 都市づくり部長 上下水道部長

第5 委員長

- 1 委員長は、委員会を代表し、会務を総理する。
- 2 委員長に事故があるときは、委員長があらかじめ指名する委員が、その職務を代理する。

第6 会議

- 1 委員会は、必要に応じ委員長が招集する。
- 2 委員長は、必要があると認めるときは、委員会に委員以外の者の出席を求めることができる。

第7 下水道ビジョン検討幹事会

- 1 委員会に下水道ビジョン検討幹事会(以下「幹事会」という。)を置く。
- 2 幹事会は、委員会から付議された事項について調査、検討する。
- 3 幹事会は、幹事長及び幹事をもって組織する。
- 4 幹事長及び幹事は、次に掲げる職にある者をもって充てる。

幹事長 上下水道部長

幹事 政策経営部企画政策課長 財務部財政課長 市民部防災安全課長 環境資源 部環境総務課長 都市づくり部都市計画課長 上下水道部上下水道総務課長 上下水道部工務課長 上下水道部業務課長 上下水道部水質管理課長 上下 水道部水再生課長 政策経営部経営改革室担当課長 上下水道部上下水道総 務課担当課長 上下水道部工務課課長補佐 上下水道部水再生課課長補佐

- 5 幹事会は、幹事長が招集する。
- 6 幹事長は、必要があると認めるときは、幹事会に幹事以外の者の出席を求めることができる。

第8 作業部会

- 1 幹事会に作業部会を置くことができる。
- 2 作業部会は、幹事会から付議された事項について調査、検討する。
- 3 作業部会は、部会長及び部会員をもって組織する。
- 4 部会長は、幹事のうちから幹事長が指名する。
- 5 部会員は、上下水道部に所属する職員のうちから幹事長が指名する。
- 6 作業部会は、部会長が招集する。
- 7 部会長は、必要があると認めるときは、作業部会に部会員以外の者の出席を求めることができる。

第9 庶務

- 1 委員会及び幹事会の庶務は、上下水道部上下水道総務課において処理する。
- 2 作業部会の庶務は、部会長の所属する課において処理する。

第10 委任

この要綱に定めるもののほか、委員会の運営に関し必要な事項は、委員長が委員に諮って定める。

附則

この要綱は、2010年5月17日から施行する。

1.2. 計画策定経過

項目		検討内容	下水道ビジョン 策定懇談会	経営 アドバイザー	下水道ビジョン 策定委員会	下水道ビジョン 検討幹事会	下水道ビジョン 部内検討会
2009 年 (H21 年)	12 月	方向性					第1回(12/2) 第2回(12/14)
2010 年 (H22 年)	1月	の検討					第3回(1/27)
	2 月						第 4 回(2/24)
	3 月						
	4 月						第5回(4/7) 第6回(4/28)
	5 月	骨子		5/17	第1回(5/26)	第1回(5/18)	
	6 月	·目的					第7回(6/16)
	7月	・位置付け					
	8月	·基本理念 ·基本方針				第2回(8/24)	第8回(8/18)
	9月	∙施策展開			第2回(9/29)		第9回(9/8)
	10 月			10/25		第3回(10/29)	第 10 回(10/4) 第 11 回(10/27)
	11月		第1回(11/17)		第3回(11/4)		
	12月	ビジョン				第4回(12/24)	第 12 回(12/15)
2011 年 (H23 年)	1月	素案作成	第2回(1/19)		第4回(1/11)		第 13 回(1/26)
	2 月	<u> </u>	第3回(2/17)	2/15			
	3 月	アクション	第4回(3/22)				
	4 月	プラン					
	5月	素案作成					
	6 月						
	7月						
	8月	パブリック コメント					
	9月						

町田市下水道ビジョン

編集・発行 町田市上下水道部上下水道総務課

所 在 地 町田市南成瀬8-1-1 (成瀬クリーンセンター)

電 話 042-720-1819

発行年月 2011年 月

印 刷

刊行物番号