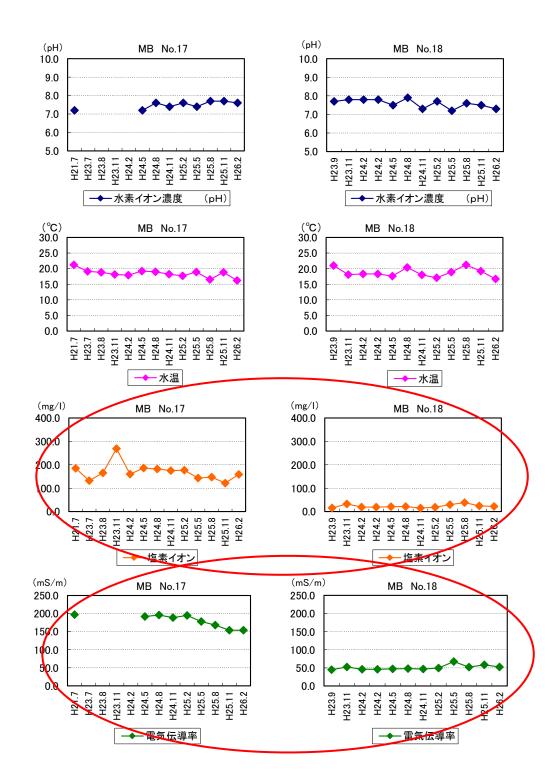
4. 旧埋立地調査

4-1. 旧埋立地保有水調查結果


■旧埋立地保有水調査結果

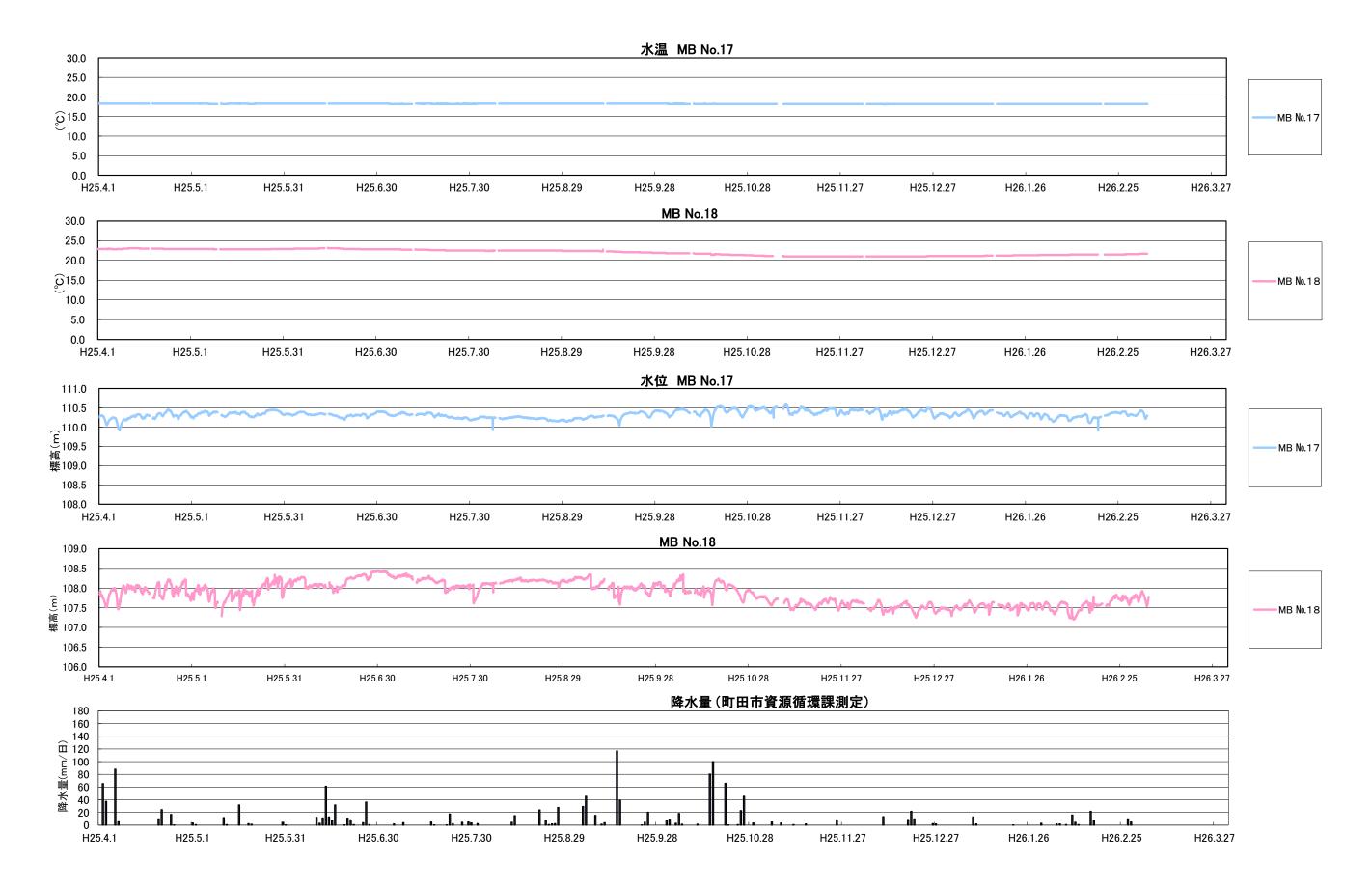
- ① MB No.18 の測定項目のうち砒素について、地下水環境基準の超過があった。ただし、埋立地内の水質であるため、周辺環境へ影響を与えることは考えられない。
- ② MB No.17 の塩素イオン、電気伝導率は MB No.18 より高い数値で推移している。
- ③ MB No.17 の水位は、降水量によらず 110.0m~110.5m 程度で推移している。また、MB No.18 の水位は、降水量によらず不規則に推移している。

表 保有水の調査結果一覧(旧埋立区)

項目		検体名称							MB No.17												MB i	No.18						地下水環境基準等
供 日		採取年月日	H26. 2. 20	H25.11.8	H25. 8. 8	H25. 5. 10	H25. 2. 21	H24. 11. 29	H24. 8. 23	H24. 5. 25	H24. 2. 9	H23. 11. 2	H23. 8. 15	H23. 7. 15	H21.7.30	H26. 2. 20	H25. 11. 8	H25. 8. 8	H25. 5. 10	H25. 2. 21	H24. 11. 29	H24. 8. 23	H24. 5. 25	H24. 2. 9	H24. 2. 9	H23.11.2	H23. 9. 8	地下小垛児去平寺
	単位	時刻	15:10	14:16	13:55	14:10	14:20	12:10	15:40	9:25	13:49	15:20	14:56	18:00	14:55	15:30	14:34	14:35	14:23	14:30	12:20	15:20	9:10	14:05	14:05	16:11	15:42	
水素イオン濃度 (pH)		-	7.6	7.7	7.7	7.4	7.6	7.4	7.6	7.2					7.2	7.3	7.5	7.6	7. 2	7.7	7.3	7.9	7.5	7.8	7.8	7.8	7.7	_
生物化学的酸素要求量 (BOD)		mg/L	_	I	_	_	_	ı	ı	-	_	-	ı	_	_	_	_	_	_	_	ı	_	-	-	ı	-	2	_
化学的酸素要求量 (COD)		mg/L	37	I	40	_	_	ı	34	-	_	-	ı	_	32	58	_	91	_	_	ı	8.9	-	-	ı	-	8.6	_
浮遊物質量 (SS)		mg/L	54	I	31	_	_	ı	11	-	_	_	ı	_	2	400	_	640	_	_	ı	29	ı	-	ı	-	170	_
塩素イオン		mg/L	159	122	147	143	177	175	182	186	160	269	165	132	185	22. 1	24. 3	38. 1	29.7	18.5	15. 1	21.8	20.9	19.2	19.2	32.6	16	_
電気伝導率		mS/m	180	154	168	178	195	189	196	192					197	52. 5	58. 4	52. 2	67.7	49.6	47.1	48. 1	47.2	46.1	46. 1	52. 5	44.9	_
水温		$^{\circ}$	16.2	18.8	16.5	18.9	17.7	18.2	19.0	19.2	17. 9	18.1	18.8	19. 1	21.2	16.7	19. 2	21.2	18. 9	17. 1	18.0	20.4	17.6	18.3	18.3	18.1	21.0	_
全シアン		mg/L	_	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	-	-	-	-	-	-	_	-	<0.1	検出されないこと
六価クロム		mg/L	_	-	-	_	-	-	_	_	-	-	-	-	-	_	_	_	-	-	-	-	-	-	-	-	<0.005	0.05以下
総水銀		mg/L	_	-	_	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	<0.0005	0.0005以下
カドミウム		mg/L	_	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	_	-	-	_	<0.001	0.003以下
鉛		mg/L	<0.001	-	0.001	-	-	-	0.008	-	-	-	-	-	-	<0.001	-	<0.001	_	-	-	0.011	-	-	-	-	<0.001	0.01以下
鉛 (ろ過後)		mg/L	_	-	-	-	-	-	-	-	-	-	-	-	-		-	_	-	-	-	-	-	-	-	-	-	_
砒素		mg/L	0.001	_	<0.001	_	_	-	0.003	_	_	_	_	_	_(_	0.015	<u> </u>	0.010	_	_	_	0.001	-	-	_	-	<0.001	0.01以下
アルキル水銀		mg/L	_	_	_	_	_	-	-	_	_	_	_	_	_		_	_	_	_	-	-	-	-	_	-	<0.0005	検出されないこと
ダイオキシン類	p	g-TEQ/L	_	-	_	_	-	-	-	_	_	-	_	-	_	_	_	_	_	-	-	-	-	-	-	-	9. 10	1以下
全窒素		mg/L	72.5	_	77.3	_	-	-	85.5	_	_	_	_	-	94.7	27.4	_	16.6	_	-	-	6.17	_	_	_	_	_	_
全りん		mg/L	0.20	_	0.18	_	-	_	0.09	-	_	_	_	-	<0.05	2.2	_	0.82	_	-	-	0.05	_	_	_	_	-	-
外観 (色)		-	微黄色	茶褐色	黄褐色	淡黄色	淡黄色	淡黄色	中緑色	_	淡黄色	淡黒色	無色	淡茶色	中灰黒色	赤茶色	茶褐色	茶褐色	茶褐色	濃灰黒色	濃茶色	濃茶褐色	_	淡黄色	淡黄色	淡黒色	微茶褐色	_
ナトリウムイオン (N a *)		mg/L	_	_	_	_	-	-	_	-	_	_	_	-	125	_	_	_	_	-	-	-	-	-	_	-	-	-
カリウムイオン (K*)		mg/L	_	_	_	_	-	-	_	-	_	_	_	-	59.6	_	_	_	_	-	-	-	-	-	_	-	-	-
硫酸イオン (SO ₄ ²⁻)		mg/L	_	_	_	-	_	_	_	_	_	_	_	_	<1	_	_	_	_	_	_	_	_	_	_	_	_	-

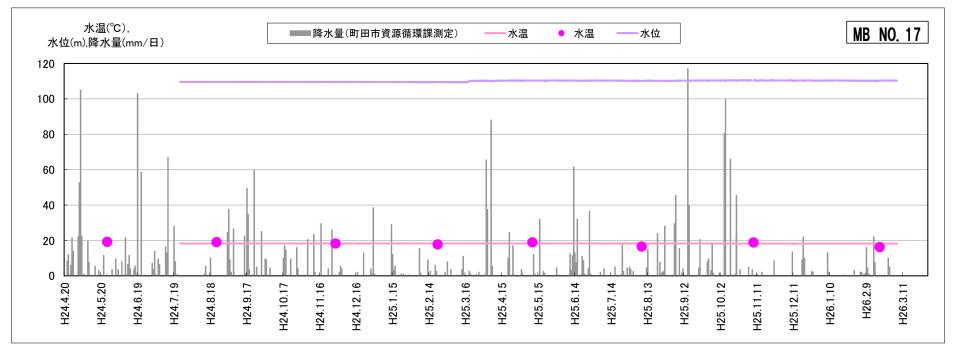
注) 1:維持管理基準は、「一般廃棄物の最終処分場及び産業廃棄物の最終処分場に係る技術上の基準を定める省令(昭和51年3月12日総理府・厚生省令第1号)」に示される基準値である。

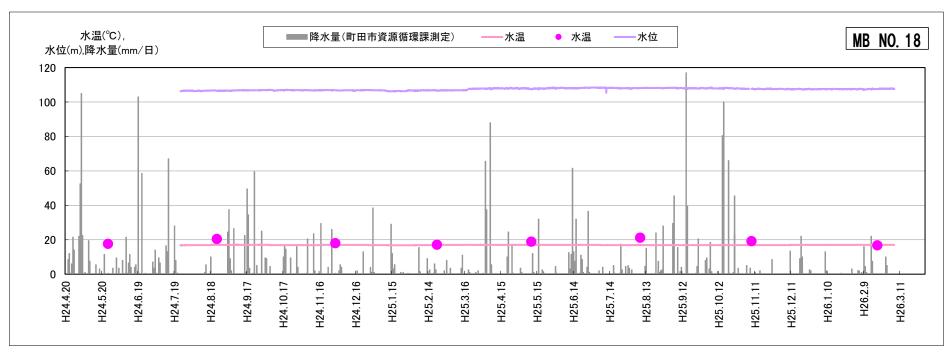
注)2:基準値等のうち、鉛(ろ過後)以外の項目については、「地下水の水質汚濁に係る環境基準について(平成9年3月13日環境庁告示第10号)」に示される環境基準による。ただし、鉛(ろ過後)については「土壌汚染対策法施行規則(平成14年12月26日環境省令第29号)」に示される地下水基準による。ダイオキシン類については「ダイオキシン類による大気の汚染、水質の汚濁(水底の底質の汚染を含む。)及び土壌の汚染に係る環境基準(平成11年12月27日環境庁告示第68号)」による。


注)3:「検出されないこと」とは指定の分析方法において、その結果が当該分析方法の定量下限値を下回ることをいう。

注) 4:ダイオキシン類のTEQ換算について

①毒性等価係数は、WHO(1998)のTEFを用いた


②検出下限値以上の値はそのままその値を用い、検出下限値未満の値は検出下限値の1/2の値を用いて各異性体の毒性等量を算出した。


注) 5:赤字は「維持管理基準」、「基準値等」の超過を示す。

■旧埋立地保有水連続測定データとサンプリング結果(H24.4.20~H26.3.6)

※●は分析結果(年4回)

※平成24年9月、12月のみ、観測所は気象庁相模原中央測定。

4-2. 埋立ガス性状結果・地中温度調査結果

①埋立ガス性状結果

- ① 両観測孔とも、湿りガス量は定量下限値以下であり、ガス発生量は少ない。
- ② 両観測孔とも、ベンゼンが環境基準値を超過している。(MB No.17:4回、MB No.18:3回) 湿りガス量が定量下限値以下であるため、ガス発生量は少なく、また、普段は観測孔の蓋が閉まっていることから、大気に漏えいするベンゼンによる環境影響は少ないと考えられる。
- ③ 両観測孔とも、メタン濃度の方が二酸化炭素濃度より高い傾向がある。
- ④ 両観測孔とも、排出ガス温度は夏に高く冬に低い傾向があり、通年を通して異常な発熱は確認されていない。

表 埋立ガス性状調査の結果一覧(旧埋立区)

	検体名称											MBN											(+) +x)
項目		定量	H25年度	H25年度	H25年度	H25年度	H24年度	H24年度	H24年度	H24年度	H23年度	H23年度	H23年度	H23年度	H22年度	H22年度	H22年度	H22年度	H21年度	H21年度	H21年度	H21年度	〔参考〕 有害大気汚染物質
	\ \採取年月日	下限値	H26. 2. 18	H25. 11. 7	H25. 8. 6	H25. 5. 8	H25. 2. 20	H24.11.27	H24. 8. 21	H24. 5. 23	H24. 2. 17	H23.11.2	H23.8.15	H23.7.15	H23. 2. 25	H22. 12. 15	H22. 10. 15	H22. 7. 26	H22. 2. 23	H21. 12. 17	H21. 10. 27	H21.7.30	(ベンゼン等)に
	単位 \ 時刻		9:40	10:00	12:50	14:14	9:55	13:33	14:20	14:40	9:56	15:00	14:20	17:19	12:30	11:30	12:00	14:25	13:53	11:45	11:40	14:17	係る環境基準
			10:17	10:42	13:10	14:34	10:25	14:03	14:50	15:10	11:40	15:07	14:39	17:25	12:50	11:57	12:20	14:45	14:17	12:05	12:00	14:42	
湿り排出ガス量	L/min	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1~1.8	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
メタン	vol ppm	_	90000	140000	92000	150000	31000	460	1700	22000	49000	11000	140000	2.5	96000	79000	64000	7600	8700	120000	1600	5000	_
二酸化炭素	vol %	0.05	3.4	4.3	3.0	3.0	1.50	0.06	0.08	0.97	1.68	0.37	3.40	<0.05	4.62	3. 5	1. 79	0.34	0.73	3. 75	0.08	0.11	_
—— 政化 从 杀	vol ppm	_	34000	43000	30000	30000	15000	600	800	9700	16800	3700	34000	0	46200	35000	17900	3400	7300	37500	800	1100	_
排出ガス温度	$^{\circ}\mathbb{C}$	_	3.1	12. 4	28. 1	23.8	20. 1	19.7	31.3	20.3	14. 1	20.0	31. 7	33. 5	17.4	21.7	26. 9	21.5	21.6	17. 9	25. 1	32. 1	_
ベンゼン	$\mu \text{ g/m}^3$	1	45	6	25	42	32	7	12	31	¦ –	6	-	-	-	110	-	_	3	<u> </u>	_	_	3
ジクロロメタン	$\mu \; { m g/m}^3$	1	⟨1	<1	(1	<1	9	2	7	11		<1	<u> </u>	_	<u> </u>	12	<u> </u>	_	1	<u> </u>	_	_	150
揮発性有機化合物 (VOC)	ppmC	_	_	-	-	-	-	_	_	-	_	-	_	_	130000	110000	87000	10000	11000	160000	2200	6500	_

	検体名称							MBNo18						
項目		定量						_	_	-	H23年度	-	_	〔参考〕 有害大気汚染物質
	単位 採取年月日	下限値	10:20	H25. 11. 7 10:44	H25. 8. 6	H25. 5. 8	H25. 2. 20 10:55	H24. 11. 27 11:36	13:35	H24. 5. 23 15:30	H24. 2. 17 10:51	15:40	15:04	(ベンゼン等)に 係る環境基準
			~ 10:44	11:25	~ 12:21	~ 13:40	~ 11:25	12:06	~ 14:05	~ 16∶00	~ 12∶57	~ 15∶52	~ 15∶20	
湿り排出ガス量	L/min	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	11.4~12.0	3.4	<0.1	-
メタン	vol ppm	_	68000	63000	1700	52000	76000	62000	91000	7300	98000	89000	89000	_
二酸化炭素	vol %	0.05	0.79	1.50	0.06	0.85	0.70	0.33	0.49	0.15	0.52	0.98	1.23	-
——政化火杀	vol ppm	_	7900	15000	600	8500	7000	3300	4900	1500	5200	9800	12300	-
排出ガス温度	$^{\circ}$	_	7.1	16. 9	28.0	22.8	21.5	18.8	24. 1	19.8	13. 1	17. 6	32.0	-
ベンゼン	$\mu \text{ g/m}^3$	1	63	29	<1	50	210	110	230	18	¦ –	200	¦ –	3
ジクロロメタン	$\mu \text{ g/m}^3$	1	<1	√1	(1	1	7	3	20	12	-	1	-	150
揮発性有機化合物 (VOC)	ppmC	_	_	-	<u> </u>	<u> </u>	_	! -	<u> </u>	<u> </u>	<u> </u>	1	I I	_

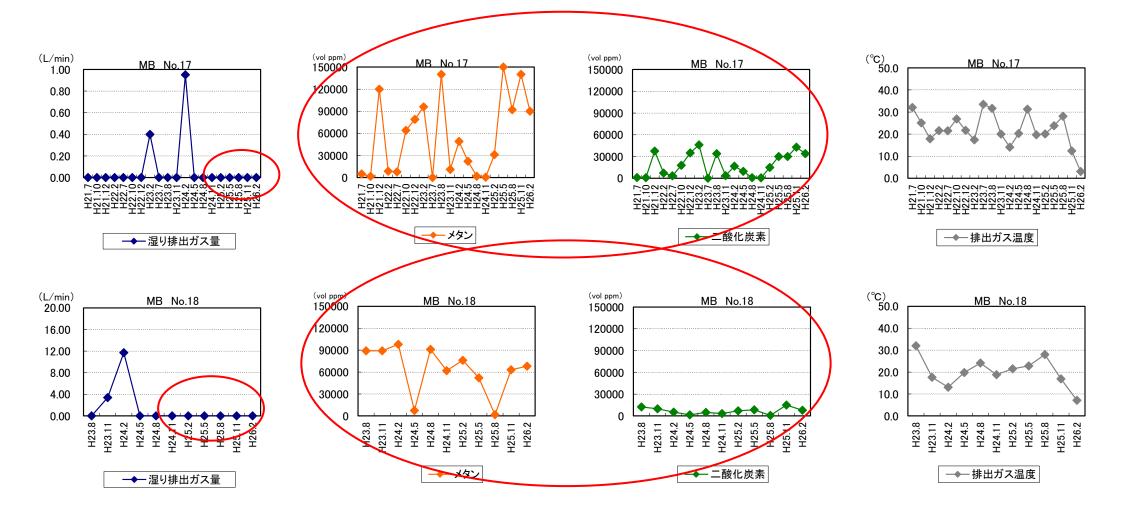


表 揮発性有機化合物測定結果一覧(旧埋立区)

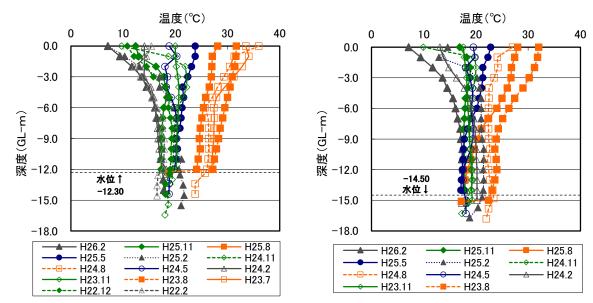
	採取地点	MB No. 17	MB No. 18
項目	採取年月日	H25年度 H25年度 H25年度 H25年度 H24年度 H24年度 H24年度 H24年度 H23年度 H23年度 H23年度 H25年度 H25年	
- - 		H26. 2. 18 H25. 11. 7 H25. 8. 6 H25. 5. 8 H25. 2. 20 H24. 11. 27 H24. 8. 21 H24. 5. 23 H24. 2. 17 H23. 8. 15 H23. 7. 15 H26. 2. 18 H25. 1	1. 7 H25. 8. 6 H25. 5. 8 H25. 2. 20 H24. 11. 27 H24. 8. 21 H24. 5. 23 H24. 2. 17 H23. 8. 15
	単位 時刻	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		10:17 10:42 13:10 14:34 10:25 14:03 14:50 15:10 11:40 14:39 17:25 10:44 11:2	25 12:21 13:40 11:25 12:06 14:05 16:00 12:57 15:20
ガス温度	$^{\circ}$	3.1 12.4 28.1 23.8 20.1 19.7 31.3 20.3 14.1 31.7 33.5 7.1 16.	9 28.0 22.8 21.5 18.8 24.1 19.8 13.1 32.0
1,1-ジクロロエチレン	vol ppm	<0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.00033 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.	023 < 0.00023 0.00030 0.0004 < 0.0003 0.0003 < 0.0003 < 0.0003 < 0.05 < 0.05
ジクロロメタン	vol ppm	<0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <0.00026 <td>026 < 0.00026 0.00037 0.0019 0.0009 0.0052 0.0033 < 0.05</td>	026 < 0.00026 0.00037 0.0019 0.0009 0.0052 0.0033 < 0.05
cis-1.2-ジクロロエチレン	vol ppm	0.0013 0.0019 0.00028 0.0010 0.0012 <0.0003 0.0003 0.0005 <0.05 <0.05 <0.05 <0.05 0.0022 0.00	20 0.00049 0.0034 0.0062 0.0035 0.0046 0.0004 < 0.05
1, 1, 1-トリクロロエタン	vol ppm	<0.00017 < 0.00017 < 0.00017 < 0.00017 < 0.00017 < 0.0002 < 0.0002 < 0.0005 < 0.0007 < 0.007 < 0.05 < 0.05 < 0.05 < 0.05 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0017 < 0.0	017 < 0. 00017 < 0. 00017 < 0. 0002 0. 0007 < 0. 0002 0. 0004 < 0. 05 < 0. 05
四塩化炭素	vol ppm	<0.00015 <0.00015 <0.00015 <0.00015 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0005 <0.05 <0.05 <0.05 <0.0015 <0.00015 <0.0002	015 < 0.00015 < 0.00015 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002
1,2-ジクロロエタン	vol ppm	<0.00023 <0.00023 <0.00023 <0.00023 <0.00023 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <	023 < 0. 00023 < 0. 00023 0. 0012 < 0. 0003 0. 0010 < 0. 0003 < 0. 05
ベンゼン	vol ppm	0.0013 0.0017 0.0072 0.012 0.0093 0.0020 0.0033 0.0088 < 0.05 0.17 < 0.05 0.018 0.00	80 <0.00029 0.014 0.059 0.033 0.0065 0.0053 <0.05 <0.05
トリクロロエチレン	vol ppm	0.00066, 0.00055, 0.00019, 0.00039, 0.0004, <0.0002, <0.0002, 0.0009, <0.05, <0.05, <0.05, <0.05, 0.0065, 0.006	041,0.00021,0.00089,0.0011,0.0008,0.0010,0.0004,<0.05,<0.05
cis-1, 3-ジクロロプロペン	vol ppm	<0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002,	002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002, <0.0002,
trans-1, 3-ジクロロプロペン	vol ppm	<0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.	002,<0.0002,<0.0002,<0.0002,<0.0002,<0.0002,<0.0002,<0.0002,<0.0002,
ジクロロプロペン	vol ppm		
1, 1, 2-トリクロロエタン	vol ppm	<0.00017 <0.00017 <0.00017 <0.00017 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0005 <0.05 <0.05 <0.05 <0.0017 <0.00017 <0.00017 <0.00017 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0	017 < 0. 00017 < 0. 00017 < 0. 0002 < 0. 0002 < 0. 0002 < 0. 0002 < 0. 0002 < 0. 0002 < 0. 0002
テトラクロロエチレン	vol ppm	<0.00014 <0.00014 <0.00014 <0.00014 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <0.0003 <p< td=""><td>014 < 0.00014 0.00024 0.0002 0.0002 0.0004 0.0013 < 0.05 < 0.05</td></p<>	014 < 0.00014 0.00024 0.0002 0.0002 0.0004 0.0013 < 0.05 < 0.05
トルエン	vol ppm	0.0028 0.0039 0.0034 0.0042 0.13 0.18 0.0053 0.0076 <0.05 <0.05 1.2 0.0044 0.00	47 0. 0026 0. 0030 0. 12 0. 31 0. 0210 0. 0055 <0. 05 <0. 05
メタン	vol ppm	90000 140000 92000 150000 31000 460 1700 22000 49000 140000 2.5 68000 6300	0 1700 52000 76000 62000 91000 7300 98000 89000
硫化水素	vol ppm	<0.01	01 < 0. 01 < 0. 01 < 0. 01 < 0. 01 < 0. 01 < 0. 01 < 0. 01 < 0. 01
一	vo1%	3.4 4.3 3.0 3.0 1.50 0.06 0.08 0.97 1.68 3.40 <0.05 0.79 1.5	0.06 0.85 0.70 0.33 0.49 0.15 0.52 1.23
二酸化炭素	vol ppm	34000 43000 30000 30000 15000 600 800 9700 16800 34000 500 7900 1500	0 600 8500 7000 3300 4900 1500 5200 12300

※今年度は、ガスクロマトグラフ法により分析を行っており、昨年度までのデータとの比較を行うため、単位を「vol ppm」で統一している。

②地中温度調査

- ① 全地点において、夏季は地中温度よりも地盤面の温度のほうが高く、冬はその逆の傾向を示している。 地盤面は季節変動の影響を受けているものの、廃棄物層での異常な発熱は認められない。
- ② MB No.17、MB No.18 ともに季節によらず地下水位付近は 20℃前後で推移している。

表 地中温度測定結果一覧(旧埋立区)


地点														MB	No.17												
調査日	平成26年	2月18日	平成25年	三11月7日	平成25年	年8月6日	平成25年	年5月8日	平成25年	2月19日	平成24年	11月26日	平成24年	-8月21日	平成24年	5月23日 平成	24年2月17日	平成23年	F11月2日	平成23年	58月15日	平成23年	F7月15日	平成22年1	.2月15日	平成22年	2月23日
時間	12:04~	~12:40	10:31~	~10:42	13:10	~13:23	14:37	~14:44	9:30~	~9:50	11:30~	-11:40	13:55^	~14:05	9:20~	~9:35 10:	20~10:32	15:09	~15:17	14:47~	~14:52	16:46	~17:32	10:05~	10:20	13:30~	13:40
項目	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃) 深月	[温度(℃) 深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)
											$GL \pm 0.0 m$	9.7															
	$GL \pm 0.0 m$		$GL \pm 0.0 m$		$GL\pm 0.0m$	28. 1			$GL \pm 0.0 m$		GL-1. Om	18.7	$GL \pm 0.0 m$		$GL \pm 0.0 m$	18.8 GL±0.		1 GL±0.0m		$GL \pm 0.0 m$	31. 7	$GL \pm 0.0 m$		$GL \pm 0.0 m$	10.8	$GL\pm 0.0m$	15.4
	GL-1. Om	0. 2	GL-1. 0m		GL-1.0m	27. 1	GL-1.0m	23. 8			GL-2. 0m	21. 9	GL-1. 0m	0110	GL-1. 0m		m 14.	1 GL-1. Om	2010	OL II OM		GL-1.0m	34. 1			GL-1. Om	14. 5
	GL-2. 0m		GL-2. 0m		GL-2.0m		GL-2. 0m		GL-2.0m		GL-3. 0m		GL-2. 0m		GL-2. 0m	18. 0 GL-2. 0		1 GL-2. 0m		GL-2. 0m		GL-2.0m		GL-2. 0m		GL-2. Om	12. 2
	GL-3. 0m		GL-3. 0m		GL-3.0m		GL-3. 0m		GL-3.0m		GL-4. 0m		GL-3. 0m		GL-3. 0m	18. 5 GL-3. 0		0 GL-3. 0m		GL-3. 0m		GL-3. 0m		GL-3. 0m		GL-3. 0m	13. 3
	GL-4. 0m		GL-4. 0m		GL-4.0m		GL-4. 0m		GL-4. 0m		GL-5. 0m		GL-4. 0m		GL-4. 0m	18. 3 GL-4. 0		3 GL-4. 0m		GL-4. 0m		GL-4. 0m		GL-4. 0m		GL-4. 0m	15.0
	GL-5. 0m		GL-5. Om GL-6. Om		GL-5. Om GL-6. Om		GL-5. 0m		GL-5.0m GL-6.0m		GL-6. Om GL-7. Om	20.5	GL-5. Om GL-6. Om		GL-5. Om GL-6. Om	19. 2 GL-5. (19. 9 GL-6. (9 GL-5. Om 2 GL-6. Om	20. 7	GL-5.0m GL-6.0m		GL-5. Om GL-6. Om		GL-5. Om GL-6. Om		GL-5. Om GL-6. Om	15. 6 16. 5
結果	GL-6. Om GL-7. Om		GL-6. Om GL-7. Om		GL-6.0m		GL-6.0m GL-7.0m		GL-6.0m GL-7.0m		GL-7. Om GL-8. Om		GL-6.0m GL-7.0m		GL-6.0m GL-7.0m	20. 3 GL=7. (3 GL-7.0m	20. 6			GL-6.0m GL-7.0m		GL-6.0m GL-7.0m		GL-6.0m GL-7.0m	17. 6
	GL-7. 0m		GL-8. 0m		GL-7.0m		GL-7. 0m		GL-7.0m		GL-8. 0m	19. 9			GL-7. Om GL-8. Om	20. 4 GL-8. (6 GL-8. 0m		GL-7. 0III		GL-7. Om		GL-7. Om GL-8. Om		GL-7. Om GL-8. Om	17. 6
	GL-9. 0m		GL-9. Om		GL-9. Om		GL-9.0m		GL -9. 0m		GL -10. 0m	10.1	GL -9. 0m		GL -9. 0m	20. 4 GL 8. C		7 GL-9. 0m	20. 4	OL OI OII		GL -9. 0m		GL -9. Om		GL -9. Om	17. 9
	GL-10. 0m		GL-10. 0m		GL-10. 0m		GL-10.0m				GL-11. 0m		GL-10.0m		GL-10.0m	20. 2 GL-10.		9 GL-10. 0m		GL-10. 0m		GL-10. 0m		GL-10.0m		GL-10.0m	17. 9
	GL-11. Om		GL-11. Om		GL-11. 0m		GL-11.0m		GL-11.0m		GL-12.0m		GL-11.0m		GL-11.0m	20. 2 GL-11.		1 GL-11. 0m		GL-11. 0m		GL-11. 0m		GL-11.0m		GL-11.0m	17. 8
	GL-12. 0m		GL-12. 0m		GL-12. 0m	_	GL-12. 0m	20.2	GL-12. 0m		GL-13. 0m	19.4	GL-12. 0m		GL-12. 0m	19. 8 GL-12.	_	3 GI -12 Om	20. 2			GL-12. 0m	27.0	GL-12. 0m	19.0	GL -12 Om	17. 7
	GL-12. 30m		GL-12. 20m		GL-12. 30r		GL-12. 40r		GL=12, 52m		GL=13, 43m	19. 0	GL-12. 39m		GL-12, 39m	18. 9 GL-12.		3 GL-12, 40		GL-12, 25m		GL-12. 2m		GL=12, 42m	18. 9	GL-12.57m	16. 7
	OL ILICOM		OD IBI BOIL		12.00	-	02 121 101	"	GL=13, 52m		GL-14, 43m		GL-13, 39m		GL-13, 39m	18. 8	1011	0 02 12 10	1011	OL TENEOM	10,0	OL TEVEN		GL-13, 42m		GL-13, 57m	16. 5
									GL-14. 52m		GL-15. 43m		GL-14.39m	23.8	GL-14. 39m	18.8				l				GL-14. 42m		GL-14.57m	16. 5
									GL-15, 52m		GL-16, 43m	18. 0								l			1 1				
水位	GL-12	2. 30m	GL-12	2.20m	GL-1	2.30m	GL-1	2.40m	GL-12	2.52m	GL-13	. 43m	GL-12	2. 39m	GL-12	2.39m G	12. 48m	GL-1	2. 40m	GL-12	2. 25m	GL-1	12.2m	GL-12	. 42m	GL-12.	. 57m
井戸全县	Ž								19.	0m	19.	0m	19.	Om	19.	0m								19.	Om	19.	Om

批点												MB	No.18									
調査日	平成26年	三2月18日	平成25年	11月7日	平成25年	=8月6日	平成25年	E5月8日	平成25年	三2月19日	平成24年		平成24年	三8月21日	平成24年	5月23日	平成24年	E2月17日	平成23年	三11月2日	平成23年	三8月15日
時間	11:25	~12:01	11:11~	-11:25	12:16~	~12:30	13:45~	~13:59	10:05~	~10:25	11:00~	~11:10	13:15	~13:25	9:55~	10:05	11:28	~11:40	15:58	~16:13	15:26~	~15:39
項目	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)
															$GL \pm 0.0 m$	19.5	$GL \pm 0.0m$	13. 1	$GL \pm 0.0 m$	17.6	$GL \pm 0.0 m$	32.0
	$GL \pm 0.0 m$	7. 1	$GL \pm 0.0m$	16.9			$GL \pm 0.0 m$	22. 8	$GL \pm 0.0 m$	14. 6	$GL \pm 0.0 m$	9.9	$GL \pm 0.0 m$	27.0	GL-1.0m	19.8	GL-1.0m	13.8	GL-1. 0m	17.8	GL-1. 0m	31.8
	GL-1.0m	9.4	GL-1. Om	18. 2	$GL \pm 0.0m$	28. 0	GL-1.0m	22. 3	GL-1.0m	12.9	GL-1.0m	19.8	GL-1. Om	24. 1	GL-2.0m	18.0	GL-2.0m	14.8	GL-2.0m	18.0	GL-2.0m	31. 2
	GL-2.0m	11.7	GL-2. 0m		GL-1. 0m		GL-2.0m		GL-2.0m	18.2	GL-2.0m	20.0	GL-2. 0m		GL-3.0m		GL-3.0m		GL-3. 0m	18.2	GL-3.0m	30.2
	GL-3.0m		GL-3. Om		GL-2. 0m		GL-3.0m		GL-3.0m		GL-3.0m		GL-3.0m		GL-4.0m		GL-4.0m		GL-4.0m		GL-4.0m	29.0
	GL-4.0m		GL-4. 0m		GL-3. 0m		GL-4. Om		GL-4.0m		GL-4. 0m		GL-4. Om		GL-5. 0m		GL-5.0m		GL-5.0m		GL-5.0m	27.4
	GL-5.0m		GL-5. Om		GL-4. 0m		GL-5.0m		GL-5.0m		GL-5.0m		GL-5. 0m		GL-6. 0m		GL-6.0m		GL-6.0m		GL-6.0m	26.3
	GL-6.0m		GL-6. Om		GL-5. 0m		GL-6.0m		GL-6.0m		GL-6.0m		GL-6.0m		GL-7.0m		GL-7.0m		GL-7.0m		GL-7.0m	25. 1
	GL-7. 0m		GL-7. Om		GL-6.0m		GL-7.0m		GL-7.0m		GL-7. 0m		GL-7.0m		GL-8.0m		GL-8.0m		GL-8.0m		GL-8.0m	24. 3
結果	GL-8.0m		GL-8.0m		GL-7. 0m		GL-8.0m		GL-8.0m		GL-8. 0m		GL-8.0m	22.4	GL-9.0m		GL-9.0m		GL-9.0m		GL-9.0m	23. 9
71H 21C	GL-9.0m		GL-9.0m		GL-8.0m		GL-9.0m		GL-9.0m		GL-9.0m		GL-9.0m		GL-10.0m		GL-10. 0m		GL-10.0m		GL-10.0m	23.6
	GL-10. 0m		GL-10.0m		GL-9. 0m		GL-10.0m		GL-10.0m		GL-10. 0m		GL-10.0m		GL-11. 0m		GL-11. 0m		GL-11. 0m		GL-11. 0m	23. 9
	GL-11. 0m		GL-11. 0m		GL-10.0m		GL-11. Om		GL-11.0m		GL-11.0m		GL-11.0m		GL-12. 0m		GL-12. 0m		GL-12.0m		GL-12. 0m	24.0
	GL-12. 0m		GL-12. 0m		GL-11.0m		GL-12. 0m		GL-12. 0m		GL-12.0m		GL-12.0m		GL-13. 0m		GL-13. 0m		GL-13.0m		GL-13. 0m	23.6
	GL-13. 0m		GL-13. 0m		GL-12.0m		GL-13. 0m		GL-13. 0m		GL-13. 0m		GL-13.0m		GL-14. 0m		GL-14. 0m		GL-14.0m		GL-14.0m	23. 1
	GL-14. 0m		GL-14. 0m		GL-13.0m		GL-14. 0m		GL-14. 0m		GL-14.0m		GL-14.0m		GL-15.0m		GL-15. 0m		GL-15. 0m		GL-15.0m	22.4
	GL-14. 50n	1	GL-14.50m		GL-13.90m		GL-14. 80m		GL-14. 71m		GL-14. 69n		GL-14.82m		GL-15. 29m		GL-15. 30r	n 17.3	GL-15. 20n	18.3	GL-15.10m	17.2
									GL-15. 71m		GL-15. 69n		GL-15.82m		GL-16. 29n	18. 1		-				<u> </u>
1									GL-16. 71m	18.8	GL-16. 69n	17.3	GL-16.82m	1 22.0		1	ļ	<u> </u>				
-Je /	CI 1	1 50	CI 14	FO	CI 15	00	CI 1	1 00	CI 1	1 71	CI 1	1	CI 1	4 00	CI 1	00	CI 1	F 20	CI 1	20	CI 15	10
水位	GL-14	4.50m	GL-14	. OUM	GL-13	. 90m	GL-14	±. 80m	GL-14 17.			4.69m Om		4.82m .0m	GL-15	0n Om	GL-I	5.30m	GL-1	5. 20m	GL-15). 1UM
井戸全長									17.	Um	17.	. Um	17.	. UM	17.	Um	l .					

MB No.18

注)破線は水位を示す。

MB No.17

5. 峠谷埋立区と池の辺埋立区における降雨量と浸出水量の関係

1)検討目的

最終覆土工事を実施した峠谷埋立区と池の辺埋立区について、最終覆土による浸出水量削減効果を検証 する。

2) 降雨量と浸出水量の関係

①降雨量の測定方法

町田リサイクル文化センターに設置の雨量計による観測

②浸出水量の測定方法

【峠谷埋立区】

測定箇所:峠谷埋立区下流部に設置した浸出水ピット

測定方法:ピット内の水中ポンプの起動回数と1回あたりの送水量から浸出水量を試算

【池の辺埋立区】

測定箇所:池の辺埋立区より下流の導水管渠(マンホール部)

測定方法:電磁流量計

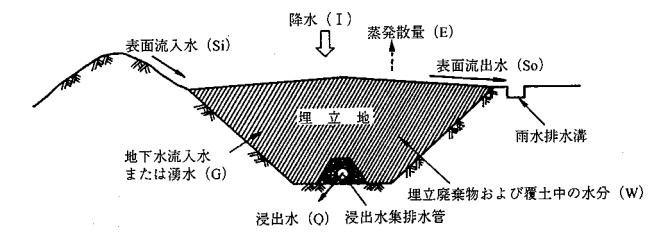
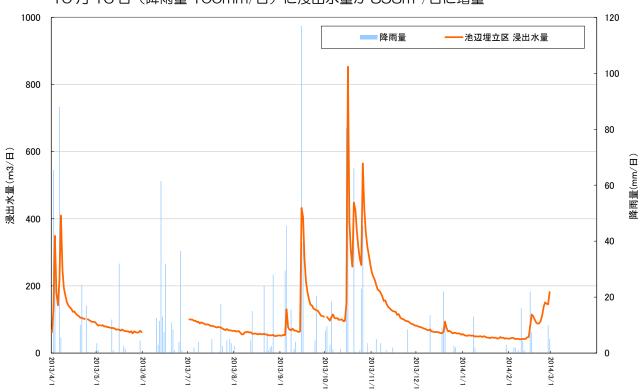


図 埋立地における水収支のイメージ

出典:廃棄物最終処分場整備の計画・設計・管理要領2010改定版(社団法人全国都市清掃会議)

■峠谷埋立区における降雨量と浸出水量の関係


・平成24年5月以降、降雨量によらず2,500m3/月未満で推移している。

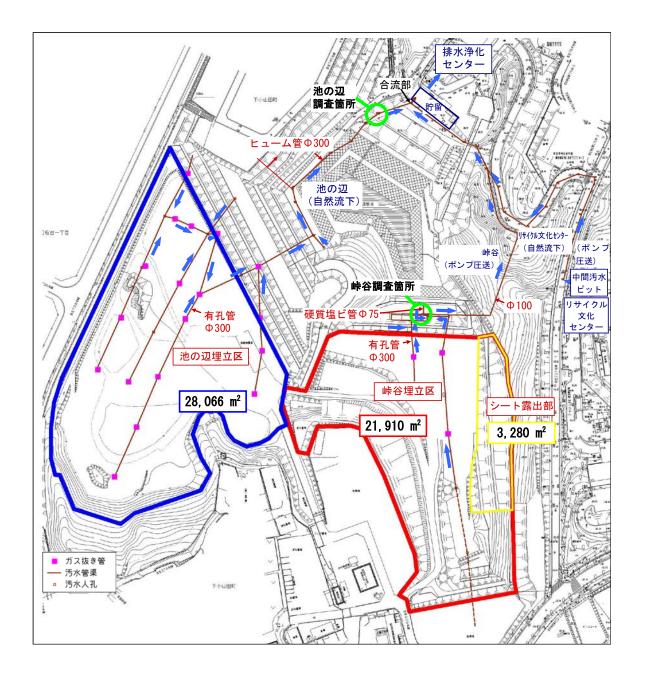
■池の辺埋立区における降雨量と浸出水量の関係

(2013年4月24日、2013年6月1日~2013年7月1日、2013年10月1日は欠測)

- ・降雨が少ない時期は浸出水量 100m3/日以下で推移している。
- ・20mm/日以上の降雨が観測された場合は、浸出水量に影響が生じている。
- 10月16日(降雨量100mm/日)に浸出水量が853m3/日に増量

3)浸出係数の算出

① 算出式……合理式による。


廃棄物最終処分場整備の計画・設計・管理要領2010改定版(社団法人全国都市清掃会議)

 $Q=1/1000\times I\times (C1\times A1+C2\times A2+C3\times A3)$

ここに、Q : 浸出水量: 降雨量

C1: 浸出係数(埋立中区画)C2: 浸出係数(埋立終了区画)C3: 浸出係数(シート露出部)

A :埋立地面積

4) 浸出係数の算出結果

表 峠谷埋立区と池の辺埋立区における浸出係数の算出結果

	t	·····································	日数※	浸出水量累計	降雨量累計	埋立地面積	平均浸出係数
	7	411b1	山奴	(m3)	(mm)	(m2)	(-)
峠谷	H24 年度	H24 年 4 月 1 日 ~ H25 年 3 月 31 日	337	21,864	1,573	21,910	0.57
谷	H25 年度	H25 年 4 月 1 日 ~ H26 年 2 月 28 日	304	16,636	1,451	(シート部分:3,280)	0.44
	H23 年度	H23 年 6 月 1 日 ~ H24 年 2 月 28 日	247	25,820	1,244		0.59
池 の 辺	H24 年度	H24 年 4 月 1 日 ~ H25 年 3 月 31 日	330	37,015	1,573	28,066	0.84
	H25 年度	H25 年 4 月 1 日 ~ H26 年 2 月 28 日	301	32,063	1,451		0.79

※峠谷埋立区においては浸出水ピット内の水中ポンプの稼働日数、池の辺埋立区においては電磁流量計の稼働日数

(参考) 月別浸出係数の目安(関東)(C1:埋立中区間、C2:埋立終了区間(=0.6×C1))

地域	浸出係数 C	1月	2 月	3 月	4 月	5月	6 月	7月	8月	9月	10 月	11 月	12 月	年平 均値
東京	C1	0.33	0.22	0.63	0.58	0.66	0.72	0.67	0.57	0.78	0.78	0.52	0.23	0.62
果尔	C2	0.20	0.13	0.38	0.35	0.40	0.43	0.40	0.34	0.47	0.47	0.31	0.14	0.37

出典:廃棄物最終処分場整備の計画・設計・管理要領 2010 改定版(社団法人全国都市清掃会議)

- ・ 峠谷埋立区においては、池の辺埋立区より浸出係数が小さい。
- ・ 峠谷埋立区において、平成25年度の浸出係数は平成24年度よりも小さくなった。
- ・ 池の辺埋立区においては、平成23年度よりも浸出係数が大きくなっており、最終覆土による 浸出水量の削減効果が見られない。
- ・ 池の辺埋立区において、平成25年度の浸出係数は平成24年度よりも小さくなった。
- ⇒峠谷埋立区においては、浸出係数の増減について今後も経過を観察する必要がある。
- ⇒池の辺埋立区においては、平成 24 年度よりも浸出係数が小さくなったものの、最終覆土による浸出水量の削減効果が見られないことから、今後、浸出水量削減に向けた対策を講じる必要がある。

6. 今年度の結果と評価

視点	本年度の結果	今後の対応(案)
視点1: 本処分場(峠谷埋立区、池の辺埋立区) における埋立廃棄物の安定性	 【水質】 塩化物イオン、電気伝導率については、池の辺埋立区の方が高い値で推移している。 BOD、COD、T-Nの分析結果については、峠谷埋立区の方が高い値で推移している。 【ガス】 ガス発生量は少なく、メタン濃度よりも二酸化炭素濃度の方が高い傾向であり、好気的な環境であると考えられる。 排出ガス温度は峠谷埋立区、池の辺埋立区ともに夏に高く冬に低い傾向があり、通年を通して異常な発熱は確認されていない。 	● 今後も本処分場における埋立廃棄物の安定性について 監視するために、継続して調査を行う必要がある。
視点2:本処分場周辺への影響	 【地下水】 ● 周辺地下水、周辺民家井戸水における分析結果は例年と同様の結果となった。 ● MB No.2、MB No.9、MB No.11、MB No.13 については、電気伝導率が他の観測孔と比べて高い傾向にある。 【底質】 ● 調整池流入口の調査結果のうち No.1 については、例年と同程度の数値で推移している。No.2 及びNo.3 については、平成 22 年度の調査から鉛、ダイオキシン類ともに低下傾向が見られる。 ● 調整池下流域の調査結果については、鉛、ダイオキシン類とも平成 24 年度の調査結果より低い値を示した。 	 今後も雨水調整池や静水池などの周辺環境に対する影響を監視するために、必要な調査項目については調査を行う。 周辺地下水の連続測定については、すべての地点において連続測定結果とサンプリング結果に大きな差が見られないこと、平成22年度からの測定結果から大きな変化が見られないことから、今後は分析対象項目に含めない。
視点3: 旧埋立地内部の状況	 【水質】 塩化物イオン、電気伝導率については、MB No.18 よりも MB No.17 の方が高い値で推移している。 MB No.18 において、砒素の環境基準値超過が一度確認された。 【ガス】 ガス発生量は少なく、二酸化炭素よりも、メタン濃度の方が高い傾向にあることから、内部は嫌気的な状態であると考えられる。 排出ガス温度は峠谷埋立区、池の辺埋立区と同様、夏に高く冬に低い傾向があり、例年を通して異常な発熱は確認されていない。 【埋設物】 平成 25 年度は旧埋立地において、埋設廃棄物の組成分析や遮水層の土壌分析を実施したが、有害物質等の分布や遮水層の汚染等の異常は確認されなかった。 	 平成25年度においては、砒素の環境基準値超過が一度確認されたが、今後も旧埋立地内部の状況を監視するために、継続して調査を行う必要がある。 平成26年度は平成25年度に実施したボーリング調査により設置した観測孔において連続測定を行う。調査箇所は、旧埋立地内を滞留する地下水への影響を確認するため、廃棄物の存在が確認されかつ地下水位が観測された箇所とする。
視点4: 人の健康へのリスク	 【底質】 調整池流入口の調査結果のうち No.1 については、例年と同程度の数値で推移している。No.2 及び No.3 については、平成 22 年度の調査から鉛、ダイオキシン類ともに低下傾向が見られる。 調整池下流域の調査結果については、鉛、ダイオキシン類とも平成 24 年度の調査結果より低い値を 示した。 【バイオアッセイ】 マイクロトックス試験によるバイオアッセイ試験結果は、MB No.4、MB No.7 において、一定の濃縮倍率では EC50 を示す値が得られた。 その他の観測孔においては、EC50 程度の毒性を示す濃縮倍率は特定されなかった。 	行つ。 ■ 国辺共長の2等部において、中の連続位本の担合は

7. 平成 26 年度の計画について

モニタリング計画(案)

目的	対 象	調査位置	分析項目	調査頻度
		3 箇所 池の辺:浸出水路マンホール (MB No.9 付近)	・水質分析:①pH, ②塩素イオン, ③電気伝導率, ④水温, ⑤外観	・4回/年
	浸出水原水	峠 谷:浸出ポンプ井 (MB No.11 付近) TBNo.2	•水質分析:⑥COD, ⑦SS, ⑧T-N, ⑨T-P	•2回/年
	浸出水等の連続測定	1 箇所 TB No.2	• 水質分析: ①水温, ②水位	•1回/月
1. 埋立廃棄物の安 定性調査		. 5 . 10.1	・ガス発生量:①湿り排出ガス量	
	埋立ガス	2箇所	ガス温度:②排出ガス温度	
		と固別 池の辺 : IB No.4 峠 谷 : TB No.2	・ガス濃度:③メタン、④二酸化炭素、⑤ベンゼン、⑥ジクロロメタン、⑦VOC(ガスクロマトグラフ法)	• 4回/年
	地中温度		・地中温度: ⑧地中温度	
		8.箇所	・水質分析:①pH,②塩素イオン,③電気伝導率,④水温,⑤外観	•4回/年
	周辺地下水	(MB No.2,MB No.6,MB No.7,MB No.8, MB No.9,MB No.11,MB No.12,MB No.13)	・水質分析:⑥COD, ⑦SS, ⑧T-N, ⑨T-P, ⑩鉛, ⑪砒素	•2回/年
		1 箇所 (下流モニタリング井戸)	・水質分析: ①塩素イオン, ②電気伝導率, ③水温, ④外観	•1回/月
	周辺地下水連続測定	6箇所 -(MB No.2,MB No.4,MB No.6,MB No.8, MB No.9,MB No.11)	<u>→ 水質分析:①pH,②電気伝導率,③水温,④水位</u>	<u>* 1回/月</u> - (データ回収)
2. 処分場周辺への		3箇所	・水質分析:①pH, ②塩素イオン, ③電気伝導率, ④水温, ⑤外観	4.57/5
影響調査		(雨水調整池の流出入口)	・ 底質分析: ①鉛, ②ダイオキシン類	・1 回/年
	雨水調整池	1 箇所	・水質分析:①pH, ②塩素イオン, ③電気伝導率, ④水温, ⑤外観 ⑥COD, ⑦SS, ⑧T-N, ⑨T-P, ⑩ナトリウムイオン, ⑪カリウムイオン, ⑫硫酸イオン	•2回/年
		(下流域静水池)	・ 底質分析: ①鉛, ②ダイオキシン類	
	周辺民家井戸・湧水	10 9 箇所(周辺民家等の井戸)	・測定項目:①pH,②電気伝導率,③塩素イオン,④水温	•1回/年
	周辺地下水 周辺民家井戸・湧水	6箇所 (MB No.2,MB No.4,MB No.6,MB No.7, MB No.8,民家井戸 No.13)	・測定項目:①バイオアッセイ(Microtox 試験)	• 1 回/年
	10 +- 1.55		・水質分析:①pH,②塩素イオン,③電気伝導率,④水温,⑤外観	•4回/年
	保有水等		・水質分析:⑥COD, ⑦SS, ⑧T-N, ⑨T-P, ⑩鉛, ⑪砒素	•2回/年
		- 	・ガス発生量:①湿り排出ガス量	
	埋立ガス	(MB No.17, MB No18)	・ガス温度:②排出ガス温度	48/5
3. 旧埋立地調査			・ガス濃度:③メタン,④二酸化炭素,⑤ベンゼン,⑥ジクロロメタン,⑦硫化水素,⑧VOC(ガスクロマトグラフ法)	•4回/年
	地中温度		• 地中温度: ⑨地中温度	
		2箇所 (MB No.17,MB No18)	•水質分析:①水温,②水位	. 4 🗇 / 🖯
	保有水等の連続測定	5箇所 (MB No.19,MB No.21,MB No.23, MB No.24,MB No.26)	•水質分析:①水温,②水位,③pH,④電気伝導率	・1回/月 (データ回収)

※1:BOD:生物化学的酸素要求量、COD:化学的酸素要求量、SS:浮遊物質量、T-N:全窒素、T-P:全りん、VOC:総揮発性有機化合物量

※2: データを見ながら、分析項目・箇所・調査頻度を見直していく

※3:バイオアッセイ試験については、過年度の調査結果を参考にしながら、本処分場による影響を確認することができる調査地点を選定する