町田市廃棄物最終処分場周辺環境保全協議会

調 査 結 果 資 料 集 (2013 年度)

町田市廃棄物最終処分場周辺環境保全協議会は、廃棄物最終処分場を適正に閉鎖および廃止するにあたり、

周辺環境の保全に関し、市民との緊密な連携のもとに協議するために設置されました。

協議会は、次に掲げる事項について協議します。

- (1)モニタリングの結果に係る評価に関すること
- (2)モニタリングの結果に異常があった場合における対応に関すること
- (3)モニタリング計画に関すること
- (4)前3号に掲げるもののほか、市長が必要と認める事項

1. 調查概要	1
2. 埋立廃棄物の安定調査	3
2-1. 浸出水原水調查結果	3
2-2. 埋立ガス性状結果・地中温度調査結果	6
3. 処分場周辺への影響調査	9
3-1. 周辺地下水調査結果	9
3-2. バイオアッセイ試験結果	21
3-3. 雨水調整池調査結果	22
3-4. 周辺井戸・湧水調査結果	23
4 旧埋立地調査	26
4-1. 旧埋立地保有水調查結果	26
4-2. 埋立ガス性状結果・地中温度調査結果	29
5. 峠谷埋立区と池の辺埋立区における降雨量と浸出水量の関係	32
6. 今年度の結果と評価	34
7. 平成 26 年度の計画について	35


1. 調査概要

①調査項目

目的	対 象	調査位置	分析項目	調査頻度
	浸出水原水	3 箇所 池の辺: 浸出水水路マンホール (MB No.9 付近)	・水質分析:①pH, ②塩素イオン, ③電気伝導率, ④水温, ⑤外観	• 4回/年
	N.M.W.L.X.	峠 谷:浸出ポンプ井 (MB No.11 付近) TB No.2	•水質分析:⑥COD, ⑦SS, ⑧T-N, ⑨T-P	•2回/年
4 押立应奔恤の中世	浸出水等の連続測定	1 箇所 TB No.2	•水質分析:①水温,②水位	•1回/月
1. 埋立廃棄物の安定性 調査			・ガス発生量: ①湿り排出ガス量	
	埋立ガス	2箇所 池の辺:IBNo.4	・ガス温度:②排出ガス温度	• 4回/年
		峠 谷:TBNo.2	・ガス濃度:③メタン,④二酸化炭素,⑤ベンゼン,⑥ジクロロメタン,⑦VOC(ガスクロマトグラフ法)	
	地中温度		地中温度: ⑧地中温度	
		8箇所 (MBNo.2,MBNo.6,MBNo.7,	・水質分析:①pH, ②塩素イオン, ③電気伝導率, ④水温, ⑤外観	•4回/年
	周辺地下水	MBNo.8, MBNo.9, MBNo.11, MBNo.12, MBNo.13)	・水質分析:⑥COD, ⑦SS, ⑧T-N, ⑨T-P, ⑩鉛, ⑪砒素	•2回/年
		1 箇所 (下流モニタリング井戸)	・水質分析:①塩素イオン,②電気伝導率,③水温,④外観	・1回/月
	周辺地下水連続測定	6箇所 (MB No.2, MB No.4, MB No.6, MB No.8, MB No.9, MB No.11)	・水質分析:①pH,②電気伝導率,③水温,④水位	• 1 回/月 (データ回収)
2. 処分場周辺への影響		3箇所	・水質分析:①pH,②塩素イオン,③電気伝導率,④水温,⑤外観	4.67/5
調査		(雨水調整池の流出入口)	・ 底質分析: ①鉛, ②ダイオキシン類	- ● 1 回/年
	雨水調整池	1 箇所 (下流域静水池)	・水質分析:①pH,②塩素イオン,③電気伝導率,④水温,⑤外観 ⑥COD,⑦SS,⑧T-N,⑨T-P,⑪ナトリウムイオン,⑪カリウムイオン,⑫硫酸イオン	•2回/年
		(ト流球部小池)	・ 底質分析: ①鉛, ②ダイオキシン類	
	周辺民家井戸・湧水	10 箇所 (周辺民家等の井戸)	・測定項目:①pH, ②電気伝導率, ③塩素イオン, ④水温	• 1 回/年
	周辺地下水 周辺民家井戸・湧水	6箇所 (MB No.2,MB No.4,MB No.6,MB No.7, MB No.8,民家井戸 No.13)	・測定項目:①バイオアッセイ(Microtox 試験)	• 1回/年
	 保有水等		・水質分析:①pH,②塩素イオン,③電気伝導率,④水温,⑤外観	• 4 回/年
	体自小寺		•水質分析:⑥COD, ⑦SS, ⑧T-N, ⑨T-P, ⑩鉛, ⑪砒素	•2回/年
	保有水等の連続測定	O 笠正	• 水質分析: ①水温, ②水位	・1回/月 (データ回収)
3. 旧埋立地調査		2 箇所 (MB No.17,MB No18)	・ガス発生量: ①湿り排出ガス量	
	埋立ガス		ガス温度:②排出ガス温度	 - ・4回/年
			・ガス濃度:③メタン,④二酸化炭素,⑤硫化水素,⑥ベンゼン,⑦ジクロロメタン,⑧VOC(ガスクロマトグラフ法)	- E/ -
	地中温度		• 地中温度:⑨地中温度	

※略語:BOD:生物化学的酸素要求量、COD:化学的酸素要求量、SS:浮遊物質量、T-N:全窒素、T-P:全りん、VOC:総揮発性有機化合物量

②埋立廃棄物の安定性、旧埋立地及び本処分場周辺への影響調査位置図

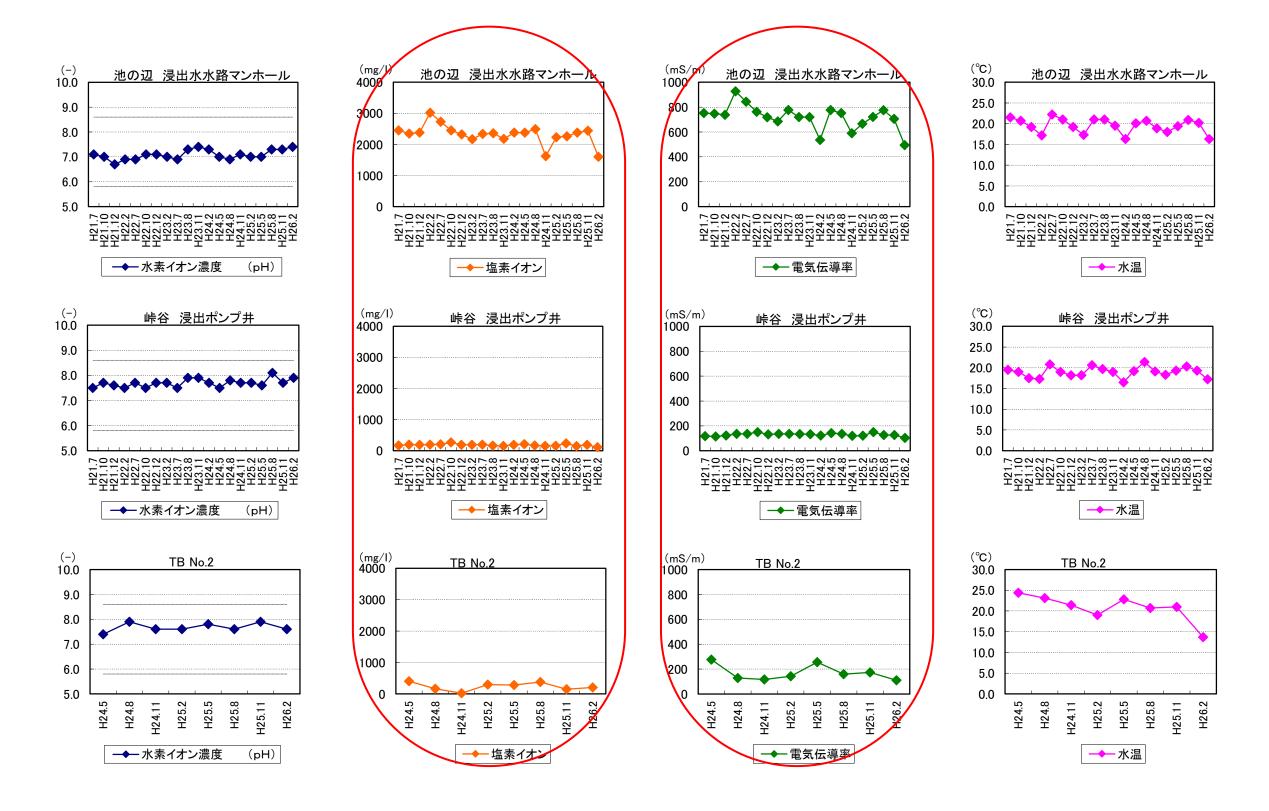
2. 埋立廃棄物の安定性調査

2-1. 浸出水原水調査結果

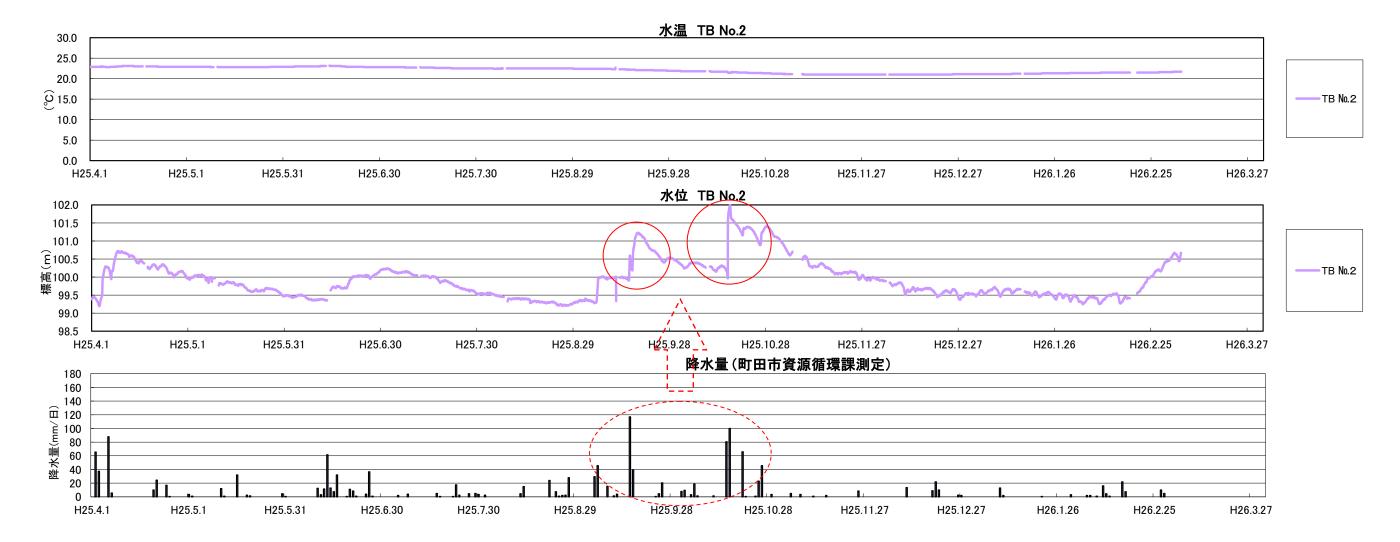
■浸出水原水調査結果

- ① pH、塩素イオン、電気伝導率、水温については、例年と同じ測定値で推移しており、塩素イオン、電気伝導率については、峠谷よりも池の辺のほうが高い数値で推移している傾向が見られる。
- ② BOD、COD、T-Nの分析結果については、例年と同程度の数値で推移しており、池の辺よりも峠谷のほうが高い数値で推移している傾向が見られる。
- ③ TB No.2 の SS について、平成 26 年 2 月 20 日の分析結果は 1,800mg/L と高い数値を示している。 過去の分析結果では 100mg/L 未満の数値で推移していることから、一時的なものなのか否かを判断するために、経過を観察する必要がある。
- ④ TB No.2 における浸出水連続測定データについて、60mm/日程度の降雨があった場合は水位が変動しており、平成25年9月や10月の強い降雨があった際は水位が1.5m~2.0m程度変動している。

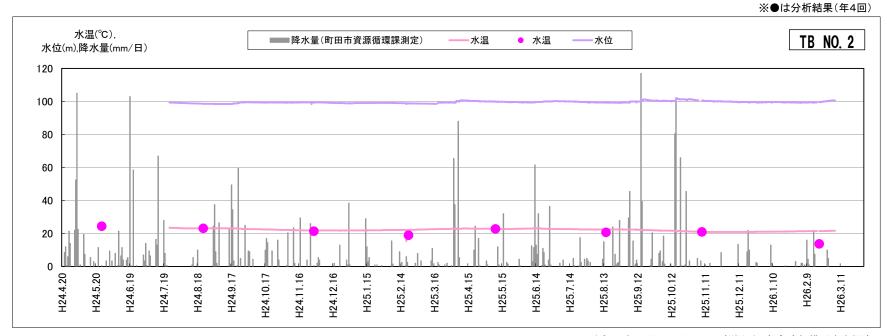
表 浸出水原水の調査結果一覧(池の辺埋立区、峠谷埋立区)


項目		検体名称										池。 浸出水水路	の辺 Sマンホール	·									〔参考〕 排水基準
		単位 \ 採取年月	H26. 2. 19	H25. 11. 8	H25. 8. 6	H25. 5. 10	H25. 2. 5	H24. 11. 29	H24. 8. 23	H24. 5. 24	H24. 2. 9	H23. 11. 2	H23. 8. 15	H23. 7. 15	H23. 2. 24	H22. 12. 15	H22. 10. 15	H22. 7. 23	H22. 2. 22	H21. 12. 15	H21. 10. 22	H21. 7. 29	
水素イオン濃度	(pH)	_	7.4	7.3	7.3	7.0	7.0	7. 1	6.9	7.0	7.3	7.4	7.3	6. 9	7.0	7.1	7.1	6.9	6. 9	6.7	7.0	7.1	5.8以上8.6以下
塩素イオン		mg/L	1600	2440	2380	2260	2230	1620	2490	2380	2380	2180	2360	2340	2170	2320	2450	2730	3020	2380	2350	2450	=
電気伝導率		mS/m	494	706	775	721	665	590	752	776	535	719	720	776	685	718	762	843	927	737	746	752	_
水温		$^{\circ}$ C	16.3	20. 2	20.9	19. 4	18.0	18. 9	20.7	20. 1	16.3	19.5	21.0	21.0	17.3	19. 2	21.0	22. 2	17.2	19. 2	20.7	21.5	_
外観(色)		_	無色	無色	無色	無色	淡灰黄色	淡黄色	淡灰色	_	無色	無色	無色	無色	-	淡灰色	_	_	淡灰黄色		-	_	=
生物化学的酸素要求量	量(BOD)	mg/L	_	_	-	_	_	_	_		_	<u> </u>	_		. –	-	_	_	<u> </u>		_		60以下
化学的酸素要求量	(COD)	mg/L	3. 3	_	4.9	_	_	_	-	5. 7	_	. –	_	4.4	_	4.2	-	_	5. 2	_	_	_	90以下
浮遊物質量	(SS)	mg/L	3	_	9	! -	-	_	_	4	-	. –	_	6	. –	5	-	_	4	. –	-	_	60以下
全窒素	(T-N)	mg/L	9. 15	_	13.6	-	_	_	-	11.0	_	-	_	12.3	_	11.0	-	_	16.3	_	_	_	120以下、60以下(日間平均)
全りん	(T-P)	mg/L	<0.05	_	<0.05	-	-	_	_	<0.05	_	i –	i –	<0.05	-	<0.05	-	_	0.13	_	_	_	16以下、8以下(日間平均)
ナトリウムイオン		mg/L	_	i –	i –	i –	-	_	687	i –	_	i –	530	i –	i –	628	_	i –	802	i –	_	i –	_
カリウムイオン		mg/L	-	-	-	i –	-	-	363	_	_	i –	310	_	. –	344.0	-	_	486.0	i –	_	_	_
硫酸イオン		mg/L	_	_	-	-	-	_	37	_	_	i –	49	_	<u> </u>	56.0	-	-	37.0	19. 2	20.7	21.5	-
鉛		mg/L	_	_	-	-	-	-	_	_	_	-	-	_	-	_	_	_	-	-	_	_	0.1以下
砒素		mg/L	_	_	-	-	_	-	-	_	_	-	_	_	_	_	-	-	-	_	-	_	0.1以下
ダイオキシン類		pg-TEQ/L	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	-		10

項目		検体名称										峠 浸出ポ	谷 ンプ井										〔参考〕 排水基準
	単位	採取年月	H26. 2. 19	H25.11.8	H25. 8. 6	H25. 5. 10	H25. 2. 5	H24. 11. 29	H24. 8. 23	H24. 5. 24	H24. 2. 9	H23.11.2	H23. 8. 15	H23. 7. 15	H23. 2. 24	H22. 12. 15	H22. 10. 14	H22. 7. 23	H22. 2. 17	H21. 12. 15	H21. 10. 22	H21.7.29	
水素イオン濃度 (pH)		_	7.9	7. 7	8. 1	7.6	7.7	7. 7	7.8	7. 5	7.7	7. 9	7. 9	7. 5	7. 7	7. 7	7.5	7. 7	7.5	7.6	7. 7	7.5	5.8以上8.6以下
塩素イオン	mg	g/L	112	189	148	234	156	153	171	208	192	152	162	193	188	188	268	206	197	190	195	170	_
電気伝導率	m ^s	S/m	103	126	127	150	122	120	136	142	123	133	134	135	136	132	150	135	135	123	115	118	_
水温		$^{\circ}$	17.2	19.3	20.3	19.3	18.3	19. 1	21.4	19. 2	16.5	19.0	19.7	20.6	18. 2	18.2	19.0	20.8	17.3	17.5	19.0	19.5	_
外観(色)		-	茶褐色	微黄褐色	淡茶褐色	淡黄色	中灰黄色	淡黄色	中灰黄色	_	淡黄色	淡茶色	淡茶色	淡茶色	_	中灰黄色	_	_	中灰黄色	_	_	_	_
生物化学的酸素要求量(BO))) mg	g/L	-	-	_	-	_	_		_	_	_	_	-	_	. – !	-	_	_	_	_	_	60以下
化学的酸素要求量 (СО))) mg	g/L	9.8	-	15	. –	-	_	. – .	13	_	-	_	13	_	11	-	_	16	_	_		90以下
浮遊物質量 (SS)	mg	g/L	6	_	11	_	_	_	_	6	_	_	_	11	_	7	-	_	. 11	_	-	_	60以下
全窒素 (T-N) mg	g/L	23.6	-	33. 1	_	-	_	-	23. 9	_	-	-	25.8	_	24.7	-	_	27.6	_	_	_	120以下、60以下(日間平均)
全りん (T-P	mg	g/L	0.08	_	0.15	_	- 1	_	- 1	<0.05	_	_	_	<0.05	_	0.1	-	_	0.29	_	_	_	16以下、8以下(日間平均)
ナトリウムイオン	mg	g/L	-	-	_	i –	- :	_	124	_	i –	-	108	-	i –	113	-	_	108	i –	_	-	_
カリウムイオン	mg	g/L	-	-	-	_		-	50.3	_	-	-	42.9	-	_	49.2	-	-	50.4	-	-	-	_
硫酸イオン	mg	g/L	-	-	_	· –	-	_	6	_	-	-	11	_	-	17.0	-	_	8.0	17. 5	19.0	19. 5	_
鉛	mg	g/L	-	-	_	-	-	-	-	_	_	-	_	-	_	-	-	-	_	-	-	-	0.1以下
砒素	mg	g/L	-	-	_	_	-	-	-	_	-	_	_	_	_	-	-	_	-	-	-	_	0.1以下
ダイオキシン類	pg-	-TEQ/L	-	-	_	_	_	_	_	_	_	_	_	_	_	-	-	_		_	_	_	10


項目	検体名称	ī			ТВ	No. 2				〔参考〕 排水基準
	単位 \ 採取年月	H26. 2. 20	H25. 11. 8	H25. 8. 15	H25. 5. 9	H25. 2. 21	H24. 11. 29	H24. 8. 23	H24. 5. 25	
水素イオン濃度 (pH)	_	7.6	7. 9	7.6	7.8	7.6	7.6	7.9	7.4	5.8以上8.6以下
塩素イオン	mg/L	205	149	381	281	296	20. 2	167	404	-
電気伝導率	mS/m	110	174	159	256	142	117	128	277	-
水温	$^{\circ}$	13.7	21.0	20.7	22.8	19.0	21.4	23. 1	24. 4	_
外観(色)	_	黒褐色	微茶褐色	灰褐色	淡灰色	濃灰黒色	淡黄色	中灰黒色	_	-
生物化学的酸素要求量(BOI) mg/L	_	-		_	-	_	. –	_	60以下
化学的酸素要求量 (COI) mg/L	55	-	11	_	-	-	10	_	90以下
浮遊物質量 (SS)	mg/L	1800	-	72	_	-	-	10	-	60以下
全窒素 (T-N) mg/L	7. 13	-	3. 26	_	-	-	2.61	-	120以下、60以下(日間平均)
全りん (T-P) mg/L	5. 5	<u> </u>	<0.05	_	i –	_	0.07	_	16以下、8以下(日間平均)
ナトリウムイオン	mg/L	_	-	-	_	-	-	-	-	_
カリウムイオン	mg/L	_	-		_	-	-	i –	_	-
硫酸イオン	mg/L	_	-	-	_	-	-	; –	_	=
鉛	mg/L	_	-	_	-	-	-	0.010	_	0.1以下
砒素	mg/L	_	-	_	_	-	-	0.001	-	0.1以下
ダイオキシン類	pg-TEQ/L	_	-	_	_	_	-	_	_	10

: 今年度の最新データ


注:「<数値」は、定量下限値以下であったことを示す。 赤字は排水基準等の超過を示す。

■浸出水連続測定データ(H25.4.1~H26.3.6)

■浸出水連続測定データとサンプリング結果の比較(H24.4.20~H26.3.6)

2-2. 埋立ガス性状結果・地中温度調査結果

①埋立ガス性状結果

- ① 両観測孔とも、湿りガス量は定量下限値以下であり、ガス発生量は少ない。
- ② 両観測孔とも、ベンゼンが環境基準値を超過している。(IB NO.4:2回、TB No2:3回) 湿りガス量が定量下限値以下であるため、ガス発生量は少なく、また、普段は観測孔の蓋が閉まっていることから、大気に漏えいするベンゼンによる環境影響は少ないと考えられる。
- ③ 両観測孔とも、二酸化炭素濃度の方がメタン濃度より高い傾向がある。
- ④ 両観測孔とも、排出ガス温度は夏に高く冬に低い傾向があり、通年を通して異常な発熱は確認されていない。

表 埋立ガス性状調査の結果一覧(池の辺埋立区、峠谷埋立区)

	検体名称													I B No.4												(4) +(1)
項目		定量	H25年度	H25年度	H25年度	H25年度	H24年度	H24年度	H24年度	H24年度	H23年度	H23年度	H23年度	H23年度	H22年度	H22年度	H22年度	H22年度	H21年度	H21年度	H21年度	H21年度	H20年度	H19年度	H18年度	〔参考〕 有害大気汚染物質
	採取年月日	下限値	H26. 2. 18	H25.11.7	7 H25. 8. 6	H25. 5. 8	H25. 2. 20	H24. 11. 27	H24.8.21	H24. 5. 23	3 H24. 2. 17	H23.11.2	H23. 8. 15	H23. 7. 15	Н23. 2. 25	H22. 12. 15	H22.10.15	H22.7.26	H22. 2. 23	H21. 12. 17	H21.10.27	H21.7.30	H20.7.10	H19.8.14	H19. 2. 20	(ベンゼン等)に
	単位 \ 時刻		12:04	12:17	11:13	11:20	12:30	10:44	9:50	11:20	15:00	13:28	10:27	13:24	10:37	13:55	10:35	11:20	10:33	11:00	10:00	10:37	9:51	10:15	11:20	係る環境基準
			12:40	12:53	11:33	11:50	13:00	11:14	10:20	11:50	15:35	13:38	11:23	13:45	10:57	14:22	10:55	11:40	11:00	11:20	10:20	11:07	14:30	13:15	15:25	
湿り排出ガス量	L/min	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	_	ND	i –	-
メタン	vol ppm	_	0.4	1900	15	1.1	27	35	50	1.7	1.6	7.4	9100	330	29	23000	24000	1.7	130	2.7	2.8	990	10	7500	1300	-
二酸化炭素	vol %	0.05	0. 24	0.43	<0.05	0.13	0.17	0.55	0.85	0. 18	0. 16	0.18	0.20	0.05	0.37	0.17	0.40	0.05	0.1	0.12	0.14	0.27	0. 52	0.41	ND	-
	vol ppm	_	2400	4300	₹500	1300	1700	5500	8500	1800	1600	1800	2000	500	3700	1700	4000	500	1000	1200	1400	2700	5200	4100	<u> </u>	-
排出ガス温度	$^{\circ}\!\mathbb{C}$	_	2.5	16.3	31.0	25.8	16. 1	19.6	39. 5	18. 5	4.6	21. 5	33.0	38.4	20.8	21.0	23.6	23.0	15.3	13. 5	15.6	27. 5	27.5	38. 2	10.6	-
ベンゼン	$\mu \text{ g/m}^3$	1	1	4	2	6	15	7	2	3	! -	4	<u> </u>	_	! -	13	<u> </u>	-	2		-	-	1	14	ND	3
ジクロロメタン	$\mu \text{ g/m}^3$	1	<1	<1	3	4	6	1	4	38	! -	<1	¦ –	-	<u> </u>	21.0	¦ –	! –	1.0	<u> </u>	; –	! –	3	5	ND	150
揮発性有機化合物 (VOC)	ppmC	_	_	_			-	_	<u> </u>	-	! -	-	-	_	43	36000	32000	19	11	5	6	1300	_	<u> </u>	<u> </u>	_

	検体名称	:												TB No.2												C (a 44)
項目		定量	H25年度	H25年度	H25年度	H25年度	H24年度	H24年度	H24年度	H24年度	H23年度	H23年度	H23年度	H23年度	H22年度	H22年度	H22年度	H22年度	H21年度	H21年度	H21年度	H21年度	H20年度	H19年度	H18年度	〔参考〕 有害大気汚染物質 (ベンゼン等) に
	採取年月日	下限値	H26. 2. 18	H25. 11. 7	H25.8.6	H25.5.8	H25. 2. 20	H24. 11. 27	H24. 8. 21	H24. 5. 23	H24. 2. 17	Н23. 11. 2	H23. 8. 1	Б Н23. 7. 15	H23. 2. 25	H22. 12. 15	H22. 10. 15	H22. 7. 26	H22. 2. 23	H21. 12. 17	7 H21. 10. 27	7 H21.7.30	H20.7.10	H19. 8. 14	H19. 2. 20	(ベンゼン等)に
	単位 \ 時刻		11:25	11:38	10:30	10:25	13:25	10:00	11:05	13:55	14:17	12:42	10:26	14:51	11:27	15:05	11:20	12:10	11:43	10:12	10:45	11:58	11:05	9:50	10:00	係る環境基準
			12:01	12:13	10:50	10:45	13:55	10:30	11:35	14:25	14:37	12:59	10:40	14:54	11:47	15:32	11:40	12:30	12:05	10:32	11:05	12:22	14:20	12:50	16:00	
湿り排出ガス量	L/min	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<u> </u>	ND	<u> </u>	=
メタン	vol ppm	_	1.8	1400	2000	9.2	4.0	8. 1	8400	1800	24	4. 5	5700	190	2.2	29	720	11000	9.5	90	240	7000	22000	29000	3500	_
二酸化炭素	vol %	0.05	2.5	0.79	0.39	0.48	3. 15	0.06	0.78	1. 95	2.62	2. 16	1.11	1.31	0.12	2. 53	1.10	0.74	2.77	1. 27	0.45	0.24	ND	ND	ND	-
	vol ppm	_	25000	7900	3900	4800	31500	600	7800	19500	26200	21600	11100	13100	1200	25300	11000	7400	27700	12700	4500	2400	i	i	i	_
排出ガス温度	$^{\circ}$	_	6. 9	14. 5	32. 2	19.4	20.8	22.2	33. 2	21.9	6.3	26.6	37. 5	38. 1	21.8	21.4	23.6	20.8	12.9	16. 1	19. 9	22.8	23. 1	34.8	10.3	_
ベンゼン	$\mu \text{ g/m}^3$	1	1	10	9	4	7	6	29	14	<u> </u>	7	-	¦ –	-	<1	¦ –	¦ –	<1	¦ –	<u> </u>	¦ –	140	91	86	3
ジクロロメタン	$\mu \text{ g/m}^3$	1	<1	1	1	4	6	3	6	15	;	<1	<u> </u>	-	-	12	<u> </u>	¦ –	<1	¦ –	_	¦ –	4	4	2	150
揮発性有機化合物 (VOC)	ppmC	_	_	-	_	-	-	-	-	<u> </u>	; –	; –	; -	-	7	40	830	14000	11	100	330	8600	<u> </u>	_	_	=

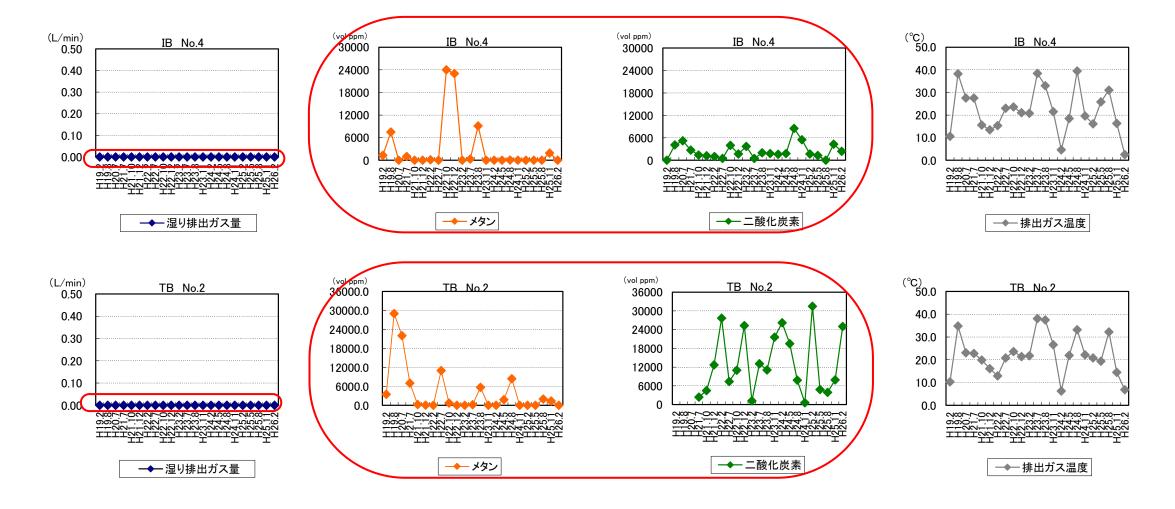


表 揮発性有機化合物測定結果一覧(池の辺埋立区、峠谷埋立区)

	採取地点	IB No. 4	2
	採取年月日	25年度,H25年度,H25年度,H25年度,H24年度,H24年度,H24年度,H24年度,H23年度,H23年度,H23年度,H25年度,H25年度,H25年度,H25年度,H24年度,H24年度,H24年度,H24年度,H25年度,H25年度,H25年度,H25年度,H25年度,H24年度,H24年度,H24年度,H24年度,H25年度,H25年度,H25年度,H25年度,H25年度,H24年度,H24年度,H24年度,H24年度,H25年度,H25年度,H25年度,H25年度,H25年度,H25年度,H25年度,H25年度,H24年度,H24年度,H24年度,H24年度,H24年度,H25年度,	度 H24年度 H24年度 H23年度 H23年度 H23年度
項目		26. 2. 18 H25. 11. 7 H25. 8. 6 H25. 5. 8 H25. 2. 20 H24. 11. 27 H24. 8. 21 H24. 5. 23 H24. 2. 17 H23. 8. 15 H23. 7. 15 H26. 2. 18 H25. 11. 7 H25. 8. 6 H25. 5. 8 H25. 2. 20 H24. 11. 2	27 H24. 8. 21 H24. 5. 23 H24. 2. 17 H23. 8. 15 H23. 7. 15
	77. (+) n++1	12:04 12:17 11:13 11:20 12:30 10:44 9:50 11:20 15:00 10:27 13:24 11:25 11:38 10:30 10:25 13:25 10:00) 11:05 13:55 14:17 10:26 13:51
	単位 大時刻	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 11:35 14:25 14:37 10:40 13:54
ガス温度	$^{\circ}\mathbb{C}$	2.5 16.3 31.0 25.8 16.1 19.6 39.5 18.5 4.6 33.0 38.4 6.9 14.5 32.2 19.4 20.8 22.2	33.2 21.9 6.3 37.5 38.1
1,1-ジクロロエチレン	vol ppm	0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003	03 0.0004 < 0.0003 < 0.05
ジクロロメタン	vol ppm	0.00026 0.00026 0.00071 0.0011 0.0015 0.0003 0.010 0.010 0.010 0.05 0.05 0.05 0.05 0	7 0.0017 0.0040 <0.05 <0.05 <0.05
cis-1.2-ジクロロエチレン	vol ppm	0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.00023 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003 < 0.0003	03 0. 0020 0. 0008 < 0. 05
1,1,1-トリクロロエタン	vol ppm	0.0090 0.0095 0.0027 0.0031 0.020 0.013 0.026 0.028 <0.05 <0.05 <0.05 <0.05 <0.0015 <0.00017 0.00019 0.00025 0.0020 <0.0000 <0.0020 <0.00000 <0.0000000000000000000000	02 0. 0007 0. 0022 <0. 05 <0. 05 <0. 05
四塩化炭素	vol ppm	0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0002 < 0.0005 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 < 0.00015 <	
1,2-ジクロロエタン	vol ppm	0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 0003 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0. 00023 < 0.	03, 0. 0003, <0. 0003, <0. 05, , <0. 05, , <0. 05
ベンゼン	vol ppm	. 00031, 0. 0011, 0. 00057, 0. 0018, 0. 0043, 0. 0021, 0. 0004, 0. 0008, <0. 05, <0. 05, <0. 05, <0. 05, <0. 05, 0. 00038, 0. 0030, 0. 0026, 0. 0010, 0. 0020, 0. 001	8 0.0083 0.0039 <0.05 <0.05 <0.05
トリクロロエチレン	vol ppm	0.00017,0.00047,0.00017,0.00017,0.00017,0.0002,0.0002,0.0002,0.0002,0.0002,0.0002,0.0002,0.005,0.05,0.	2 0.0047 0.0040 0.05 0.05 0.05
cis-1, 3-ジクロロプロペン	vol ppm	0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0.)2, <0.0002, <0.0002, <0.05, <0.05, <0.05
trans-1, 3-ジクロロプロペン	vol ppm	0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002¦<0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0. 0002 <0.)2 <0.0002 <0.0002 <0.05 <0.05 <0.05
ジクロロプロペン	vol ppm	- - - - - - - - - -	- <0.05 <0.05 <0.05
1,1,2-トリクロロエタン	vol ppm	0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 0002, < 0. 0002, < 0. 0002, < 0. 0002, < 0. 0002, < 0. 0002, < 0. 0002, < 0. 0002, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0. 00017, < 0.)2 <0. 0002 <0. 0002 <0. 05
テトラクロロエチレン	vol ppm	0.00014,0.00066,<0.00014,0.00014,0.00014,0.0003,0.0002,0.0004,0.0002,0.0002,0.005,0.05,0.05,0.05,0.005,0.0015,0.0013,0.0023,0.00058,0.0075,0.000	02 0.0060 0.0057 0.05 0.05 0.05 0.05
トルエン	vol ppm	0.0018 0.0038 0.0083 0.010 0.079 0.58 0.036 0.013 <0.05 <0.05 <0.05 <0.05 <0.05 0.0029 0.0019 0.066 0.013 0.052 0.69	0.020 0.013 0.09 <0.05 1.6
メタン	vol ppm	0.4 1900 15 1.1 27 35 50 1.7 1.6 9100 330 1.8 1400 2000 9.2 4.0 8.1	8400 1800 24 5700 190
硫化水素	vol ppm		
二酸化炭素	vol%	0.24 0.43 <0.05 0.13 0.17 0.55 0.85 0.18 0.16 0.20 0.05 2.50 0.79 0.39 0.48 3.15 0.06	0.78 1.95 2.62 1.11 1.31
一段间次示	vol ppm	2400 4300 <500 1300 1700 5500 8500 1800 1600 2000 500 25000 7900 3900 4800 31500 600	7800 19500 26200 11100 13100

※今年度は、ガスクロマトグラフ法により分析を行っており、昨年度までのデータとの比較を行うため、単位を「vol ppm」で統一している。

②地中温度調査結果

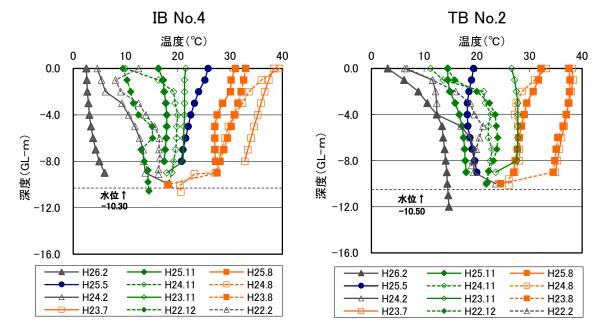

- ① 全地点において、夏季は地中温度よりも地盤面の温度の方が高く、冬季はその逆の傾向を示している。 地盤面は季節変動の影響を受けているものの、廃棄物層での異常な発熱は認められない。
- ② IB No.4、TB No.2 ともに季節によらず GL-10m 付近は 20℃前後で推移している。

表 地中温度測定結果一覧(池の辺埋立区、峠谷埋立区)

								表	地中	温度》	則定結:	果一覧	(池0	り辺埋	立区、	峠谷 草	里立区)							
地点	I											IB	No.4											
調査日	平成26年	2月18日	平成25年	三11月7日	平成25年	≦8月6日	平成25年	F5月8日	平成24年	11月26日	平成24年	三8月21日	平成24年	三2月17日	平成23年	11月2日	平成23年	8月15日	平成23年	57月15日	平成22年	12月22日	平成22年2	2月23日
時間	9:40~			~12:53	11:33~		11:52~		10:05~		9:30~		15:37~		13:45~		11:34~		13:46~			~10:20	10:15~	
項目	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)
結果	GL±0. Om GL=1. Om GL=2. Om GL=3. Om GL=4. Om GL=5. Om GL=6. Om GL=7. Om GL=9. Om GL=10. Om GL=10. 3m	2. 9 3. 1 3. 4 3. 8 4. 3 5. 0 6. 0		16. 3 17. 2 17. 4 17. 7 17. 9 17. 8 17. 6 17. 4	GL±0. 0m GL-1. 0m GL-2. 0m GL-3. 0m GL-4. 0m GL-5. 0m GL-6. 0m GL-7. 0m GL-7. 0m GL-9. 0m GL-9. 1m	30. 1 28. 6 27. 5 27. 1 27. 1 27. 1 27. 2	GL±0. Om GL-1. Om GL-2. Om GL-3. Om GL-4. Om GL-5. Om GL-6. Om GL-7. Om GL-8. Om GL-9. Om	25. 2 24. 0 23. 2 22. 5 22. 0 21. 5 21. 0 20. 7	GL±0. Om GL−1. Om GL−2. Om GL−3. Om GL−3. Om GL−5. Om GL−6. Om GL−7. Om GL−8. Om GL−8. 95m GL−9. 95m	16. 3 19. 2 19. 5 20. 0 19. 8 19. 8 19. 6 19. 2 18. 9	GL±0. Om GL-1. Om GL-2. Om GL-3. Om GL-4. Om GL-5. Om GL-6. Om GL-7. Om GL-9. Om GL-9. Om GL-10. O9 GL-10. 63n	36. 0 33. 6 32. 4 30. 9 29. 7 29. 0 28. 4 27. 8 27. 2 23. 2 20. 4	GL±0. Om GL-1. Om GL-2. Om GL-3. Om GL-4. Om GL-5. Om GL-6. Om GL-7. Om GL-7. Om GL-9. Om GL-9. Om GL-10. Om GL-10. Om GL-10. Om	6. 2 9. 3 10. 6 11. 8 12. 7 13. 4 13. 5 13. 8 18. 4	GL±0. 0m GL-1. 0m GL-2. 0m GL-3. 0m GL-4. 0m GL-5. 0m GL-6. 0m GL-7. 0m GL-9. 0m GL-9. 00m	21. 3 21. 3 21. 3 21. 3 21. 2 21. 1 21. 1 21. 0 17. 9	GL±0. Om GL-1. Om GL-2. Om GL-3. Om GL-4. Om GL-5. Om GL-6. Om GL-7. Om GL-9. Om GL-9. Om GL-10. Om GL-10. Of	31. 5 30. 8 30. 2 29. 5 28. 8 28. 1 27. 5 18. 1	GL±0. Om GL-1. Om GL-2. Om GL-3. Om GL-4. Om GL-5. Om GL-6. Om GL-7. Om GL-8. Om GL-8. Tm	37. 4 36. 6 35. 9 35. 3 34. 6 34. 0 33. 4 32. 8	GL±0. 0m GL−1. 0m GL−2. 0m GL−3. 0m GL−4. 0m GL−5. 0m GL−6. 0m GL−7. 0m GL−8. 0m GL−9. 78m GL−9. 78m GL−9. 78m GL−9. 78m	11. 0 11. 5 12. 5 15. 1 15. 2 13. 0 14. 3 14. 3	GL±0. 0m GL-1. 0m GL-2. 0m GL-3. 0m GL-4. 0m GL-5. 0m GL-6. 0m GL-7. 0m GL-7. 70m GL-7. 10m GL-9. 10m GL-9. 10m	12. 5 8. 1 9. 1 12. 5 13. 9 15. 6 16. 5 16. 4 16. 6 16. 3
井戸全長									10.		10.										10.		9. 10	Om
地点	l											TB	No.2											
調査日	平成26年	2月18日	平成25年	三11月7日	平成25年	=8月6日	平成25年	₽5月8日	平成24年	11月26日	平成24年		平成24年	三2月17日	平成23年	11月2日	平成23年	8月15日	平成23年	57月15日	平成22年	12月15日	平成22年2	2月23日
時間	10:25~		1 // 4 1	~12:13	10:50~		10:50~	1 - 2 4 - 1 .	10:30~	,	10:45		1 // 4 1	~14:50	13:09~		10:42~		14:55^	.,,,		~10:50	11:25~	
項目	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)		温度(℃)	深度	温度(℃)		温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)		温度(℃)
														ļ										
														ļ									,	
	07 0 0	0.0									1		CT 0 0				OT 1 0 0	05.5						
	$GL \pm 0.0m$	6. 9											$GL \pm 0.0m$	6.3			$GL \pm 0.0 m$	37. 5					1	1

調査日	平成26年			≦11月7日		手8月6日	平成25年		平成24年		1 //- 1	8月21日	平成24年		平成23年		平成23年		平成23年		平成22年		平成22年	
時間	10:25~			~12:13	10:50~	~11:00	10:50~			~10:40		~10:55		~14:50		-13:19	10:42~			~15:00	10:35~			~11:35
項目	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃)	深度	温度(℃
																								—
																								
	GL±0.0m	6, 9											GL±0.0m	6.3			GL±0.0m	37. 5						
	GL-1. Om		GL±0.0m	14. 5	$GL \pm 0.0 m$	32. 2	GL±0.0m	19. 4			$GL \pm 0.0 m$		GL-1. 0m		$GL \pm 0.0 m$	26. 6	GL-1. 0m		$GL \pm 0.0m$	38. 1				
	GL-2. 0m		GL-1.0m	14. 5	GL-1.0m		GL-1.0m	19.0	$GL \pm 0.0 m$	11.2	GL-1.0m	31.0	GL-2.0m	12. 2	GL-1.0m	27. 2	GL-2.0m		GL-1. Om	38. 3	$GL \pm 0.0 m$	14. 4		
	GL-3. 0m		GL-2.0m		GL-2. 0m		GL-2.0m		GL-1.0m		GL-2.0m		GL-3. 0m		GL-2.0m		GL-3. 0m		GL-2.0m		GL-1.0m		$GL \pm 0.0 m$	6.
結果	GL-4. Om		GL-3.0m		GL-3.0m		GL-3.0m		GL-2. 0m		GL-3.0m		GL-4. 0m		GL-3. 0m		GL-4.0m		GL-3.0m		GL-2. 0m		GL-1.0m	11.
//H2/K	GL-5. 0m		GL-4. 0m		GL-4. 0m		GL-4. 0m		GL-3. 0m		GL-4. 0m		GL-5. 0m		GL-4. 0m		GL-5. 0m		GL-4. 0m		GL-3. 0m		GL-2. 0m	16.
	GL-6. 0m		GL-5. 0m		GL-5. Om GL-6. Om		GL-5. Om GL-6. Om		GL-4. 0m GL-5. 0m		GL-5. 0m GL-6. 0m		GL-6. 0m		GL-5. 0m		GL-6.0m GL-7.0m		GL-5. 0m		GL-4. 0m		GL-3. 0m	18.
	GL-7. 0m GL-8. 0m		GL-6. Om GL-7. Om		GL-6.0m GL-7.0m		GL-6. 0m GL-7. 0m		GL-5. Om GL-6. Om		GL-6.0m GL-7.0m		GL-7. Om GL-8. Om		GL-6. 0m GL-7. 0m		GL-7. Om GL-8. Om		GL-6. 0m GL-7. 0m		GL-5. Om GL-6. Om		GL-4. 0m GL-5. 0m	19. 21.
	GL-9. 0m		GL-8. Om		GL-8. 0m		GL-8. 0m		GL-7.0m		GL-8. 0m		GL-9. Om	19. 4			GL-9. 0m	34.6	GL-8. 0m		GL-7. Om		GL-6. 0m	20.
	GL-10. 0m		GL-9. 0m		GL-9. 0m		GL-9. 0m		GL-8. 0m		GL-9. 0m		GL-10.0m		GL-9. 0m		GL-10. 0m	24. 5	GL-9. 0m		GL-8. 0m		GL-7. Om	19.
	GL-10. 50m		GL-9. 30m		GL-9.60m		GL-9.80m		GL-8.91m		GL-9.60m		GL-10, 07n		GL-9.00m		GL-10. 40m		GL-9.3m		GL-8.90m		GL-8.00m	19.
									GL-9. 91m		GL-10. 10m	26. 1									GL-9.90m	21. 9	GL-8. 42m	19.
																					GL-10.02m	21.8		
L										L						l								
水位	GL-10).50m	GL-9	. 30m	GL-9	.60m	GL-9	.80m	GL-8		GL-9		GL-10	0.07m	GL-9	. 00m	GL-10). 40m	GL-	9.3m	GL-8		GL-8.	
井戸全長									10.	10m	10.	10m									10.	02m	8. 4	،2m

注)破線は水位を示す。

